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Lecture 1 — 9/16/10

Definition 1.1. A composition law or multiplication law
on a set S is a map c : S × S → S.

Example. (Composition of functions)
Let X be a set. Define S := {f : X → X}. Consider the
map

S × S → S

(f, g) 7→ f ◦ g

given by (f ◦ g)(x) = f(g(x)). Note that ◦ is associative:

X
f−→ Y

g−→ Z
h−→W

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Definition 1.2. A group is a set G with composition law
· satisfying

1. associativity

2. two-sided identity: ∀g ∈ G,∃1 ∈ G :

g · 1 = g = 1 · g

3. inverse law: ∀g ∈ G,∃g−1 ∈ G :

g · g−1 = 1 = g−1 · g

Proposition 1.3. g−1 is unique.

Proof. Suppose g, g−1
1 , g−1

2 ∈ G, where g−1
1 , g−1

2 both in-
verses g.

1 = g−1
1 · g

1 · g−1
2 = (g−1

1 · g) · g−1
2

g−1
2 = g−1

1 · (g · g−1
2 )

g−1
2 = g−1

1 �

Definition 1.4. The order of a group G, denoted |G|, is
the cardinality of the set G.

Example. Consider the group of symmetries of regular
n-gon, which is given by the group D2n, the dihedral
group of order 2n. Consider the regular hexagon:
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where r = rotation by 360◦

n and f = flip across axis (note
that rotation rotates this axis of reflection), and these
two functions are related by function composition. Note
that both r and f permute the vertices of the hexagon
(so, for instance, f(r(1, 2, 3, 4, 5, 6)) = (2, 3, 4, 5, 6, 1) =
(5, 4, 3, 2, 1, 6)). We also have that rn = 1, f2 = 1, fr =
r−1f for D2n.

Example. The symmetric group or the permutation
group on n “letters” is

Sn := {bijections {1, . . . , n} ←→ {1, . . . , n}}

The composition law on Sn is function composition, and
|Sn| = n!.

Example. The general linear group is GLn(R), the
group of invertible n-by-n real matrices with matrix mul-
tiplication as the composition law.

Definition 1.5. Let G be a group, H ⊆ G. Then H
is a subgroup of G if H is closed under composition and
inversion and if 1 ∈ H. We write H ≤ G.

Example. D2n ⊆ Sn D6 = S3

Definition 1.6. Two groups (G1, ·), (G2,�) are
homomorphic if ∃ϕ : G1 → G2 such that ∀x, y ∈ G,
ϕ(x · y) = ϕ(x) � ϕ(y). h is called a homomorphism. A
bijective homomorphism is called an isomorphism, and
G1, G2 are isomorphic in that case.

Example.

r :=

0 1 0
0 0 1
1 0 0

 , f :=

0 1 0
1 0 0
0 0 1


(
{
∏
A : A = r, f ∈ GLn(R)}, ·

)
∼= D6

Definition 1.7. An abelian group is a group whose com-
position law satisfies

4. commutativity

Note. If G a group, ∀a, b, c ∈ G, c · a = b · a ⇐⇒ c = b.
This is called the cancellation law.

Lecture 2 — 9/7/10

Proposition 2.1. Let G be a group, H ⊆ G. H ≤ G iff
H is nonempty and closed under (a, b) 7→ a · b−1.

Lemma 2.2. The intersection of any collection of sub-
groups of G is again a subgroup.

Example.

1. The functions R+
ex−−→←−−
ln x

R>0 (from the reals under +

to the positive reals under ·). We have ex+y = ex ·ex
and ln(x · y) = ln(x) + ln(y), so both are homomor-
phic; since they are also inverses, R+ ∼= R>0.

1
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2. Z+−{0} is closed under associative · with an iden-
tity element, but fails to follow the inverse law; how-
ever, the cancellation law still holds.

Lemma 2.3. Let ϕ : G1 → G2 be a homomorphism be-
tween groups. Then im(ϕ) is a subgroup of G2.

Proof. ϕ(11) = 12, and ∀x ∈ G1, ϕ(x−1) = ϕ(x)−1. �

Note. Let ϕ : G1 → G2 be a homomorphism between
groups, x ∈ G1.

1. ϕ(xn) = ϕ(x)n,∀n ∈ Z

2. x0 := 11 =⇒ ϕ(x)0 = 12

3. n = −m =⇒ xn = (x−1)m = (xm)−1

Definition 2.4. Let G a group, a ∈ G. De-
fine Fa : Z+ → G by n 7→ an. Since ∀n,m ∈ Z,
an+m = an · am, Fa is a homomorphism. Then the sub-
group of G generated by a is defined

〈a〉 := im(Fa) = {an}

We write ord(a) = |a| = | 〈a〉 |.

Definition 2.5. Let S ⊆ G a group. Then the subgroup
of G generated by S is

〈S〉 :=
⋂

H≤G:
S⊆H

H

Remark.

1. There is at least one subgroup of G containing S,
namely G.

2. By lemma, the intersection is a subgroup of G.

3. Any subgroup of G containing S contains 〈S〉.

4. 〈S〉 is the smallest subgroup containing S.

Example. 〈r, f〉 = D2n. We say that r, f are generators
of D2n.

Example. Lattice of subgroups of D12.

D12

〈r〉

〈r2〉

〈r2, f〉

〈f〉

{1}

〈r3〉
〈r3, f〉

〈r2f〉 〈r3f〉 〈r4f〉 〈r5f〉 〈r6f〉

Example. Let G be the group of symmetries of the reg-
ular tetrahedron.

4 3
2

1

The map G 3 g 7→ Pg ∈ S4 is an injective homomorphism
of groups

G −� S4

Example. Find a surjective homomorphism

S4 −� S3

The regular tetrahedron has 6 edges, in which there
are three pairs of opposite edges. Any permutation of
{1, . . . , 4} brings edges to edges:

{edge, opp edge} −→ {edge’, opp edge’}
{(12), (34)} −→ {(1′2′), (3′4′)}

Each permutation of {1, . . . , 4} gives a permutation of
{I, II, III}, sets of opposite edges.

Lecture 3 — 9/9/10

Note. Let Z+ be the additive group of integers, and let
H ≤ Z+. Either H = {0} or H contains a positive num-
ber.

Observation 3.1. Let d be the smallest positive element
in H. Then every element of H is a multiple of d; that is,

〈d〉 = H = {0,±d,±2d, . . .} = {n · d : n ∈ Z} =: d · Z

Proof. Let a ∈ H, a > 0. Then a = m · d+ r, 0 ≤ r < d.
a ∈ H, d ∈ H =⇒ r = a − md ∈ H. Either r = 0 or
0 < r < d. r = 0 =⇒ a a multiple of d. r 6= 0 =⇒ r < d.
But r ∈ H where d is minimal. ⇒⇐. �

2
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Proposition 3.2. Let slc(a, b) denote the smallest posi-
tive linear combination of a, b. Then ∀a, b ∈ Z, a, b > 0,
gcd(a, b) = slc(a, b). Moreover, gcd(a, b) is the only com-
mon divisor of a, b that is a linear combination, and
slc(a, b) is the only linear combination of a, b that is also
a common divisor. Furthermore, any linear combination
of a, b is a multiple of slc(a, b).

Proof. The set of all linear combinations of a, b is given
by

LC(a, b) := {ar + bs : r, s ∈ Z} = 〈a, b〉 = 〈d〉 ⊂ Z+

for some d, by the previous observation. Since 〈d〉 =
〈a, b〉, we must have d|a and d|b. We also have that

d = aR+ bS : R,S ∈ Z

Let c be a common divisor of a, b: c|a and c|b. Then
c|aR + bS =⇒ c|d =⇒ d = gcd(a, b). (Note that we
have also shown that any common divisor of a, b divides
gcd(a, b). �

Definition 3.3. A finite cyclic group of order n is a group
Cn with the property that Cn = 〈x〉 for some x ∈ Cn, and
n is the smallest number such that xn = 1.

Cn = 〈x〉 = {1, x, x2, . . . , xn−1}

Claim 3.4. Let H ⊆ Cn be a subgroup, H 6= {1}. Then
the subset S ⊂ Z+ defined

S := {a ∈ Z+ : xa ∈ H}

is a subgroup of Z+.

Proof. Let a, b ∈ S. Then xa, xb ∈ H. Since H is closed
under ·, xa · xb = xa+b ∈ H =⇒ a + b ∈ S. Since H
is closed under inverse, (xa)−1 = x−a ∈ H =⇒ −a ∈ S.
Finally, 1 = x0 ∈ H =⇒ 0 ∈ S. �

Proposition 3.5. Any subgroup of Cn is generated by xd

for some d|n. Furthermore, {H : H ⊆ Cn a subgroup} is
bijective with the set {d : d|n}.

Proof. Recall S above. Since S is a subfield of Z+,
S = 〈d〉 for some d. Hence,

H = {1, x±d, x±2d}

We have that xn = 1 ∈ H =⇒ n ∈ S =⇒ d|n. �

Note.

Z+ −� Cn

a 7−→ xa

Definition 3.6. The circle group is given by

T := {z ∈ C : |z| = 1}

Note that every point in T ⇐⇒ some angle θ, and that
multiplication of points ⇐⇒ adding angles. The circle
group is also abelian. Note that

R+ −� T
r 7−→ e2πir

and also that

Cn −� T

xa 7−→ e2πi 1
n

Lecture 4 — 9/14/10

Definition 4.1. An automorphism is an isomorphism
from a group G to itself.

Proposition 4.2. For any group G, the set of all auto-
morphisms on G, denoted Aut(G), is a group.

Proof. The identity function serves as the identity ele-
ment in Aut(G), function composition is associative, and
since automorphisms are bijective, each function clearly
has an inverse in Aut(G). �

Definition 4.3. Let g ∈ G a group. The conjugation by
g is the map cg : G→ G given by x 7→ gxg−1.

Proposition 4.4. cg as defined above is an automor-
phism. The set of all automorphisms cg is a group

Inn(G) ⊆ Aut(G)

called the inner automorphism group. Moreover, the map
c : G → Inn(G) given by c(g) = cg is a group homomor-
phism, and G is abelian iff c is trivial.

Proof. Let x, y ∈ G.

cg(xy) = gxyg−1 = gxg−1gyg−1 = cg(x)cg(y)

So cg is a homomorphism. Surjectivity is obvious; ∀x ∈
G, cg(g

−1xg) = x. Finally, let x, y ∈ G, x 6= y. If
cg(x) = cg(y), then

g−1gxg−1g = g−1gyg−1g

So x = y. Then cg is injective, and hence an automor-
phism.

Conjugation by 1 yields the identity automorphism,
and the composition cg ◦ cg′ yields conjugation by gg′,
and hence Inn(G) is indeed a group. Now fix x ∈ G. Let
g, g′ ∈ G.

c(gg′)(x) = cgg′(x) = gg′xg′−1g−1 = cg(cg′(x)) = cg◦cg′(x)

3
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So c is indeed a group homomorphism.
Suppose G is abelian. Then

cg(x) = gxg−1 = xgg−1 = x

and hence cg ≡ id. If ∀g ∈ G, cg ≡ id, then gxg−1 = x =
xgg−1 =⇒ gx = xg, and hence G is abelian. �

Definition 4.5. A subgroup N ⊆ G is normal in G if
∀g ∈ G,∀n ∈ N, g · n · g−1 ∈ N . We write N E G.

Definition 4.6. The kernel of a homomorphism
ϕ : G→ G′ between groups is

ker(ϕ) := {x ∈ G : ϕ(x) = 1}

Proposition 4.7. Given ϕ : G→ G′ a group homomor-
phism,

1. ker(ϕ) is a subgroup.

2. ker(ϕ) is normal.

Proof.

1. Let g, g′ ∈ ker(ϕ). Then ϕ(gg′) = ϕ(g)ϕ(g′) = 1,
and hence ker(ϕ) is closed under multiplication. It
is clear that 1 ∈ ker(ϕ), and since

1 = ϕ(1) = ϕ(gg−1) = ϕ(g)ϕ(g−1) = ϕ(g−1)

ker(ϕ) is closed under inverse, and hence is a sub-
group.

2. Let n ∈ ker(ϕ), g ∈ G.

ϕ(gng−1) = ϕ(g)ϕ(k)ϕ(g−1) = ϕ(k) = 1

so gng−1 ∈ ker(ϕ), which means that ker(ϕ) is nor-
mal. �

Definition 4.8. Let G be a group, g ∈ G, H ⊆ G a
subgroup. Conjugation of all elements in H with g yields
a conjugate subgroup gHg−1.

Example. Consider the lattice of subgroups of S3.

S3

〈r〉

〈f〉 〈fr〉 〈fr2〉

{1}

The subgroup 〈r〉 is normal (and 〈r〉 ∼= C3). However,
none of the subgroups 〈f〉 , 〈fr〉 , 〈fr2〉 are normal, and
conjugation with any element in G yields another one of
the subgroups.

Definition 4.9. Let G be a group. The center of G is
the set

Z(G) = {z ∈ G : ∀g ∈ G, z · g = g · z}

Proposition 4.10. Let G be a group, c : G→ Inn(G) be
given by g 7→ cg. Then Z(G) = ker(c).

Proof. Let g ∈ ker(c). Then c(g) = id, or equivalently,
cg(x) = x, ∀x ∈ G. Then gxg−1 = x = xgg−1, and by
cancellation, gx = xg, so g ∈ Z(G). Now let g ∈ Z(G).
Then cg(x) = gxg−1 = xgg−1 = x, so cg ≡ id and
g ∈ ker(c). �

Corollary 4.11. Z(G) is normal.

Definition 4.12. Let G be a group, H ⊆ G a subgroup.
Fix h ∈ H. The map G→ G given by x 7→ x ·h is clearly
bijective. Define a relation x ∼ y iff ∃h ∈ H : y = x · h.
It is easily seen that this is an equivalence relation on G:

1. x ∼ x ⇐⇒ x = xh ⇐⇒ h = 1

2. x ∼ y ⇐⇒ x = yh ⇐⇒ y = xh−1 ⇐⇒ y ∼ x.

3. x ∼ y, y ∼ z ⇐⇒ x = yh, y = zh′ ⇐⇒
x = zh′h ⇐⇒ x ∼ z.

This equivalence relation yields a natural partition of the
set G into disjoint unions of left H-cosets

gH = {gh : h ∈ H}

We can also similarly define right H-cosets by

Hg = {hg : h ∈ H}

Lecture 5 — 9/16/10

Remark. We can view a left H-coset in terms of a
representative of the coset. Given x ∈ gH, every ele-
ment in gH has the form xh : h ∈ H. We can see that
any two left H-cosets in G are bijective

{xh : h ∈ H} ←→ {yh : h ∈ H}

and in particular, we have a bijection z 7→ (x−1y) · z.
This means that |gH| does not depend on g, and more-
over, |gH| = |H| since H = 1H, the trivial coset. We can
therefore write G as a disjoint union of left cosets

G = 1H t g1H t g2H t . . .

Note also that the number of left H-cosets and the num-
ber of right H-cosets are both equal to |G|/|H|.

Definition 5.1. The index [G : H] of a subgroup H in a

finite group G is the ratio |G||H| .

4
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Theorem 5.2 (Lagrange). If G is a finite group and
H ⊆ G a subgroup, |H| divides |G|. In other words,

|G| = [G : H]|H|

Corollary 5.3. Any group of order p ∈ P is cyclic.

Proposition 5.4. Let ϕ : G → G′ be a group homo-
morphism and let g, g′ ∈ G. Then ϕ(g) = ϕ(g′) ⇐⇒
∃n ∈ ker(ϕ) : g′ = gn.

Proof. Suppose ϕ(g) = ϕ(g′). Then ϕ(g)−1ϕ(g′) = 1,
and hence ϕ(g′−1g) = 1, so g′−1g ∈ ker(ϕ), yielding the
desired result. In the reverse direction, g′ = gn =⇒
ϕ(g′) = ϕ(gn) =⇒ ϕ(g′) = ϕ(g). �

Note. The above proposition shows that there is a bijec-
tion between the ker(ϕ)-cosets in G and imϕ.

Corollary 5.5. Let ϕ : G → G′ be a group homomor-
phism.

|G| = | kerϕ|| imϕ|

Definition 5.6. The set of left H-cosets in G is written
G/H; that is, c ∈ G/H ⇐⇒ c = gH ⊆ G for some g.
The set of right H-cosets is H\G. We refer to these as
the coset spaces.

Proposition 5.7. Let G be a group, H ≤ G. Let gH
be a left coset and Hg′ a right coset. If gH = Hg′, then
gH = Hg.

Proof. By assumption, ∃h ∈ H : g1 = hg′. Choose
h′ ∈ H. Then h′g = h′hg′ ∈ Hg′. Similarly,
h′g′ = h′h−1g ∈ Hg. This yields Hg ⊆ Hg′ ⊆ Hg. Then
Hg′ = Hg = gH, as desired. �

Proposition 5.8. Let G be a group, N ≤ G. Then N is
normal in G iff ∀g ∈ G, gN = Ng.

Proof. Suppose N is normal, fix g ∈ G. Then ∀n ∈ N ,
gng−1 ∈ N and g−1ng ∈ N . We have gN 3 gn =
(ghg1)g ∈ Ng and Ng 3 ng = g(g−1ng) ∈ gN , so
gN = Ng. Suppose instead that ∀g ∈ G, gN = Ng.
Fix g ∈ G. Then gn ∈ gN , and ∃n′ : Ng 3 n′g = gn.
Then n′ = gng−1 ∈ N , so N is normal. �

Example. Any subgroup H ⊆ Z is of the form

H = n · Z, n ≥ 0

Every H coset looks like a + n · Z. a, b ∈ Z are in the
same coset iff

1. n|a− b.

2. a ≡ b (mod n)

Note also that Z/nZ ∼= Cn and |Z/nZ| = n.

Definition 5.9. Let G be a group. Let x ≡ y iff
∃g ∈ G : x = gyg−1. We refer to x and y as conjugate.
This achieves a partition of G into conjugacy classes,
given by

Cx := {gxg−1 : g ∈ G}

for any x ∈ G.

Observation 5.10 (Class Equation). Since all elements
of Z(G) the center of G commute with all other elements
of G, the equivalence relation condition x = gyg−1 yields
x = y. Hence, every element of Z(G) is in its own con-
jugacy class. Since the conjugacy classes partition G, we
have the following class equation:

|G| = |Z(G)|+
∑

x/∈Z(G)

|Cx|

This allows us to write |G| as a sum of its divisors.

Definition 5.11. An action of the group G on the set X
is a map α : G×X → X satisfying

1. ∀x ∈ X,α(1, x) = x

2. α(g1 · g2, x) = α(g1, α(g2, x))

The second axiom can also be written as an associative
law: (g1 ·g2)�x = g1� (g2�x) where · is group composi-
tion and � is group action. Restricting to a single g ∈ G
yields αg : X → X, which is invertible by the inverse law
and the second axiom of the group action definition.

Definition 5.12. Define

Perm(X) := {f : X → X|f bijective}.

An action of G on X is a homomorphism A : G →
Perm(X).

Claim 5.13. The two definitions of action are equivalent.

Proof.

=⇒ Let α : G×X → X be an action by the first defini-
tion. We know that αg ∈ Perm(X). Then the map
A given by g 7→ αg takes G→ Perm(X). We must
show that A is a homomorphism. 1 · x = x =⇒
A(1) = α1 = id. By “associativity,” for any x ∈ X,

A(g1g2)(x) = αg1g2(x) = (g1g2)� x
= g1 � (g2 � x)

= αg1(αg2(x))

= A(g1) ·A(g2)(x)

So ∀x ∈ X,A(g1g2) = αg1 · αg2 .

⇐= Left as exercise. �

5
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Lecture 6 — 9/21/10

Definition 6.1. Let α be a group action of G on X. If
x ∈ X, we say that y ∈ X is in the same orbit as x with
respect to α if ∃g ∈ G : g ·x = y. The orbit of x is denoted

Ox = Gx = {gx : g ∈ G}

This yields an equivalence relation, which produces a set
of equivalence classes X/G called the orbit space, along
with a partition

X =
∐

O∈X/G

O

Note that

|X| =
∑

O∈X/G

|O|

Example. A subgroup H ⊆ G acts on G by left multi-
plication.

G =
∐

gH∈G/H

gH

So |G| = |H| · [G : H] by the rule above.

Example. Let H ⊆ G be a subgroup.

1. Action by Left-µ:

H ×G −→ G

(h, g) 7−→ hg

2. Action by Right-µ:

H ×G −→ G

(h, g) 7−→ gh−1

Note that (h, g) 7→ gh fails associativity.

3. Action by Conjugation:

H ×G −→ G

(h, g) 7−→ hgh−1

We also get H → Aut(G).

Note. Orbits under left or right multiplication are right
and left H-cosets respectively, so all have cardinality |H|.
Orbits under conjugation are the conjugacy classes of G.

Definition 6.2. A group action α is transitive on X if
there is only one orbit: ∀x, y ∈ X,∃g ∈ G : g · x = y.

Definition 6.3. A fixed point under an action α is an
element x ∈ X : ∀g ∈ G, g · x = x.

Definition 6.4. Let α : G→ X be a group action. The
stabilizer or isotropy subgroup of x ∈ X is

Gx := {g ∈ G : gx = x}

More generally, if S ⊆ X, the stablizer GS of S is

GS := {g ∈ G : gS = S}

Lemma 6.5. Gx is a subgroup of G.

Proof.

1. 1 ∈ Gx because 1 · x = x.

2. Let g1, g2 ∈ Gx. (g1 ·g2)(x) = g1 ·(g2 ·x) = g1 ·x = x.
So g1 · g2 ∈ Gx.

3. Let g ∈ Gx. Since g·x = x and 1·x = (g−1·g)·x = x,
we have x = g−1 · (g · x) = g−1 · x. Hence,
g−1 ∈ Gx. �

Lemma 6.6. Let x ∈ X, a set acted on by a group G.
Then there is a natural bijection

ϕ : G/Gx −→ Ox

gGx 7−→ gx

between the left Gx-coset space and the orbit of x.

Note. Take another representative g′ ∈ gGx. Then
∃h ∈ Gx : g′ = g · h. Since h ∈ Gx is a stabilizer, we
have

gGx_

��

g′Gx_

��

g · x gh · x g′ · x

This shows that our function is well-defined.

Proof. Let g1Gx, g2Gx ∈ G/Gx, which map to g1x, g2x.
Suppose g1x = g2x. Then x = g−1

2 g1 · x. Call
h = g−1

2 g1 ∈ Gx. Then g2h = g1, so g1Gx = g2Gx.
Hence, ϕ is injective. Our map is clearly surjective;
∀gx ∈ Ox, ϕ(gGx) = gx. Therefore, ϕ is bijective. �

Corollary 6.7 (Orbit-Stabilizer Theorem). Let G a
group act on X a set, let x ∈ X.

|G| = |Gx||Ox|

This follows from the above proposition and Lagrange’s
Theorem.

Example. Let G = R+ (note that G is abelian), let X
be the unit circle in the plane. Consider the group action
α(r, e2πia) = e2πi(a+r). It is clear that ∀x ∈ X,Gx = Z.
The only orbit in X/G is X. Consider the Gx cosets in
G. Each Gx coset is given by r + Gx ≡ r + Z. Hence,
[0, 1) = G/Gx → G · x = X, or [0, 1) 3 r ≡ r + Z 7→
e2πi(a+r). This is our map g ·Gx 7→ g · x.

6
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Example. Let G = R, X = C. r ∈ R acts on z ∈ C
by multiplication by e2πir. α(r, z) = e2πirz. For any
z ∈ X, z 6= 0, Gz = Z; if z = 0, then Gz = R. So the
G/Gz : z = 0 is a single coset, namely all of R, and the
orbit of z = 0 consists of only 0.

Lecture 7 — 9/23/10

Example. Given a bijection T : X → X, we have an
action of Z on X given by α(n, x) = Tn(x), noting that
T 0 = 1, T−m = (T−1)m. If we take T to be rotation by
an angle 2π/QC (that is, an angle of 2π over any irra-
tional), X = R2 and choose x 6= (0, 0), then the orbit of
any x ∈ X is dense within the circle of rotation of x.

Example. As an exercise, describe the automorphism
group of a lattice, G, (that is, the Euclidean motions of
plane bringing lattice to lattice) and the plane X.

Remark. Let σ ∈ Sn = Perm{1, 2, . . . , n}, and let
X = {1, . . . , n}. Consider the group 〈σ〉 acting on X.
One description of this group action (and of σ) can be
given by (

1, . . . , n

σ(1), . . . , σ(n)

)
We can also describe 〈σ〉 by the orbits of X. Consider
the orbit, relative to 〈σ〉, of 1. ∃d1 : σd1(1) = 1. So the
orbit of 1 is given by

(1, σ(1), σ2(1), . . . , σd1−1(1))

Ultimately, we have

σ = (1, σ(1), . . . , σd1−1(1))(x2, σ(x2), . . . , σd2−1(x2)) · · ·
· · · (xk, . . . , σdk−1(xk))

which describes σ completely (as well as the partition of
X by orbits) and is unique up to (1) cyclic permutations
of each of the so-called “cycles” and (2) the order of the
cycles.

Definition 7.1. A permutation τ ∈ Sn is called a cycle
of length l if τ = (a1, a2, . . . , al), by which we mean

• ai ∈ {1, . . . , n}

• i 6= j =⇒ ai 6= aj

• i < l =⇒ τ(ai) = ai+1

• τ(al) = a

• τ(b) = b if b /∈ {a1, . . . , al}

Definition 7.2. Two cycles τ = (a1, . . . , al) and
η = (b1, . . . , bm) ∈ Sn are disjoint if {ai} ∩ {bj} = ∅.

Note. The order of τ · η = η · τ is the least common
multiple of l and m.

Observation 7.3. Disjoint cycles commute.

Observation 7.4. Any permutation in Sn is expressible
uniquely (up to cyclic permutation and commutativity)
as a product of disjoint cycles.

Definition 7.5. A partition of a natural number n ∈ N
is a collection {ni ∈ N : ni > 0} such that∑

ni = n

Note. A partition is associated to any σ ∈ Sn, where

σ =

t∏
1=0

cycles of length ni

yielding
n = n1 + . . .+ nt

Note that t = |X/ 〈σ〉 | (that is, the orbits of X are fully
determined by the cyclic decomposition of a permutation
σ).

Note. There is a surjective map

Part : Sn −� partitions of n

Observation 7.6. Let π be a partition of n. Then

Part−1(π) ⊂ Sn

Take σ, σ′ ∈ Part−1(π) ⊂ Sn. We can write

σ = (a1 · · · an1)(an1+1 · · · an1+n2) · · · (· · · an)

and since σ, σ′ induce the same partition,

σ′ = (a′1 · · · a′n1
) · · · (· · · a′n)

There exists g ∈ Sn such that the action of g brings(
a1, . . . , an
a′1, . . . , a

′
n

)
Then it is clear that we have

σ′ = gσg−1

Proposition 7.7. Two permutations in Sn have the
same partition iff they are conjugate in Sn. Hence,
Part−1(π) given above is a conjugacy class in Sn.

Definition 7.8. Let G be a group. We know that G acts
on the set X = G by conjugation, where α(g, x) = gxg−1.
The stabilizer Gx for any x ∈ X is called the centralizer
of x, given by

Z(x) := {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg}

7
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Observation 7.9. Let G be a group, x ∈ G. 〈x〉 ⊆ Z(x)
and 〈x〉 ⊆ Z(Z(x)). For any other subgroup H ≤ G, if
x ∈ Z(H), then H ⊆ Z(x).

Proposition 7.10. Let G be a finite group, x ∈ G. Then

|G| = |Cx||Z(x)|

follows from the Counting Formula.

Lecture 8 — 9/28/10

Corollary 8.1. By the above proposition and the class
equation,

|G| = |Z(G)|+
∑

[G : Z(x)]

Theorem 8.2. Let G be a group, N ≤ G. TFAE:

1. N is normal (∀g ∈ G, gNg−1 = N).

2. ∀g ∈ G,∃g′ : gN = Ng′.

3. ∀g ∈ G, gN = Ng.

4. N is the kernel of a homomorphism.

5. N is the union of conjugacy classes.

Proof. We already know that 1, 2, and 3, and moreover,
4 =⇒ 1 is clear, as is the equivalence of 5. We will show
1 =⇒ 4.

Let N E G, and define ϕ : G → G/N by g 7→ gN .
We claim that G/N is a group with the composition
law g1N · g2N = g1Ng2N . We note that g1(Ng2)N =
g1g2NN = g1g2N . G/N has an identity 1N ∈ G/N and
satisfies the inverse law gN · g−1N = 1N ; it is associa-
tive by associativity of G and hence is a group. By our
composition law, it is immediately clear that

ϕ(g1g2) = g1g2N = g1N · g2N = ϕ(g1)ϕ(g2)

So ϕ is a homomorphism, and N = ker(ϕ). �

Theorem 8.3 (First Isomorphism Theorem). Let ϕ :
G → G′ be a homomorphism of groups. We have by the
previous theorem a homomorphism ψ : G→ G/N for any
N E G. Then there is a unique injective homomorphism
ι : G/ ker(ϕ) → G′ such that ι ◦ ψ = ϕ. Equivalently, we
say that the following diagram is commutative:

G
ϕ

//

ψ

��

G′

G/ ker(ϕ)

ι

::

In particular, if ϕ is surjective, ι is an isomorphism.

Proof. Write N = ker(ϕ). Define ι by ι(gN) = ϕ(g).
We must show that ι is a well-defined, injective homo-
morphism. Consider g, g′ ∈ N : gN = g′N . Then ∃n ∈
N : gn = g′1. Hence, ϕ(g′) = ϕ(gn) = ϕ(g)ϕ(n) = ϕ(g),
so ι is well-defined. We note also that ι is homomorphic
because ϕ is homomorphic.

Let g, g′ ∈ G : ι(gN) = ι(g′N) =⇒ ϕ(g) = ϕ(g′).
∃x ∈ G : g′ = gx. Then ϕ(g) = ϕ(gx) = ϕ(g)ϕ(x). So
we must have ϕ(x) = 1, and so x ∈ ker(ϕ) ≡ N . Then
g ∈ g′N , so gN = g′N , and ι is injective. �

Example.

ϕ : R+ −→ T
x 7−→ e2πix

ker(ϕ) = Z+, so R+/Z+ ∼= T.

Example. Z+ −� Z+/nZ+

Example. Let V be the Klein four group. We can view
V ≤ S4 as a group of permutations

{1, (12)(34), (13)(24), (14)(23)}

We have shown previously that there is a surjective homo-
morphism ϕ : S4 −� S3. Based on our past construction,
we see that V = ker(ϕ). So S4/V ∼= S3.

Example. 〈r〉 ⊂ D2n, and D2n/ 〈r〉 is a group of order
two.

Definition 8.4. We know there is a homomorphism

det : GLn(R) −� R×

Define the special linear group to be the subgroup

SLn(R) = ker(det)

Note that GLn(R)/SLn(R) ∼= R×.

Definition 8.5. We also know there is an injective ho-
momorphism

Sn
� � i // GLn(R)

det // // R×

And we define the sign homomorphism

sgn : Sn → {0, 1}

by σ 7→ (−1)n, where n is the number of transpositions
to which σ decomposes (the parity is invariant).

Definition 8.6. The alternating group An ⊂ Sn is

1. An = ker(sgn)

2. An = {even permutations in Sn}

Example. S3
∼= D6 A3

∼= 〈r〉

8
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Lecture 9 — 9/30/10

Remark. Recall the homomorphism ϕ : G� G/N with
ker(ϕ) = N . By the First Isomorphism Theory, G is
“built-up” from N and G/N , |G| = |N | · |G/N |.

Definition 9.1. A finite group G is called solvable if
there is a sequence of groups

{1} = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G

such that

1. Gi E Gi+1.

2. |Gi+1/Gi| = pi prime; that is, Gi+1/Gi is cyclic of
prime order.

Example. S3 is solvable, as is S4. The latter is solvable
because ϕ : S4 � S3, ker(ϕ) = V.

Definition 9.2. Let G1, G2 be groups. The product
group is the set

G1 ×G2 = {(g1, g2) : gi ∈ Gi}

with composition law defined by coordinates:

(g1, g2) · (g′1, g′2) = (g1g
′
1, g2g

′
2)

Claim 9.3. G1 ×G2 is a group.

Proof. 1X = (11, 12) and (g−1
1 , g−1

2 ) = (g1, g2)−1. �

Note. |G1 ×G2| = |G1| · |G2|

Example. V ∼= C2 × C2

Observation 9.4. Consider the natural projection maps
πi : G1 ×G2 → Gi. We have

G1 × {12}

∼=

{11} ×G2

∼=

ker(π2)� s
C

&&

ker(π1)
K k

C

xx

G1 ×G2

π1

xxxx

π2

&& &&
G1 G2

By the First Isomorphism Theorem,

G1×G2/G1×{12} ∼= G2 and G1×G2/{11}×G2
∼= G1.

Theorem 9.5 (Fundamental Theorem of Abelian
Groups). Let G be any finite abelian group. Then G is
isomorphic to a finite product of cyclic groups. In partic-
ular, G is isomorphic to a finite product of cyclic groups
of prime-power order.

Definition 9.6. Define the quaternion group by

H = {±1,±i,±j,±k}

where i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and
(−1)2 = 1.

Observation 9.7. Let us explore H. Consider its lattice
of subgroups.

H

〈i〉 〈j〉 〈k〉

{±1}

{1}

Note that every subgroup of H is normal, but H is non-
abelian. Note also that Z(H) = {±1}. The only “inter-
esting” quotient of H is H/Z(H) ∼= C2×C2

∼= V. Consider
the automorphism group.

Aut(H) 3 α


i 7−→ εi · i′

j 7−→ εj · j′

k 7−→ εk · k′

where εi ∈ {±1}, i′, j′, k′ ∈ {i, j, k}. We recognize a ho-
momorphism

ker(p) �
�

// Aut(H)
p
// // S3

given by

Perm{i, j, k} ∼= S3 3 p(α) =

(
i j k
i′ j′ k′

)
We also have a function giving us

ε(α) = (εi, εj , εk) ∈ C2 × C2 × C2

But not every triple (εi, εj , εk) yields an automorphism.
For α ∈ ker(p),

α←→


i 7−→ eii

j 7−→ ejj

k 7−→ ekk

Since ij = k, we have α(i)α(j) = α(k), which means
εiεjij = εkk. This yields a coherence condition

εiεjεk = 1

or equivalently, a restriction to the kernel of a homomor-
phism

ker(γ) �
�

// C2 × C2 × C2
γ
// // C2

9
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We note that ker(γ) ∼= ker(p) ∼= V. So we have
V CAut(H) and Aut(H)/V ∼= S3, and hence

|Aut(H)| = |V| · |S3| = 4 · 6 = 24

Lecture 10 — 10/5/10

Definition 10.1. A ring A is a set with two operations,
+ and · such that

• A is an abelian group under +.

• · is associative.

The operations of + and · are related by

• a two-sided distributive law.

A is a ring with unit if

• ∃1 : ∀x ∈ A, 1 · x = x = x · 1.

We will use the term “ring” to mean “ring with unit.”

Definition 10.2. A ring homomorphism f : A → A′ is
a map from a ring A to a ring A′ such that

1. f(a+ b) = f(a) + f(b).

2. f(a · b) = f(a) · f(b).

3. f(1) = f(1′).

Note that the third requirement is necessary to avoid cat-
egorizing, say, the zero map as a homomorphism.

Example. 1. Z,Q,R,C are all commutative rings.

2. Let A be any commutative ring, let n ≥ 1. Then
Matn(A) is a ring.

3. Let A be any commutative ring. Then A[X], is the
polynomial ring in X with coefficients in A; it inher-
its commutativity from A. Likewise, A[X1, . . . , Xn]
is a polynomial ring.

Example. Let f : A → A′ be a ring homomorphism
between commutative rings A,A′. Then the map

fn : Mn(A) −→Mn(A′)

(ai,j) 7−→ (f(ai,j))

is a ring homomorphism. Moreover, the map

f̃ : A[X] −→ A′[X]

d∑
i=0

aiX
i 7−→

d∑
i=0

f(ai)X
i

is a ring homomorphism

Observation 10.3.

1. If

A
f−→ A′

g−→ A′′

represent ring homomorphisms, then gf : A → A′′

is a ring homomorphism.

2. The zero map is only a ring homomorphism if the
codomain is the zero ring.

3. There is exactly one ring homomorphism Z → A
for any ring A; it is entirely given by f(n) =
f(1) + · · ·+ f(1)︸ ︷︷ ︸

n

and f(−n) = −f(n).

Definition 10.4. Let A be a ring, B ⊆ A. B is a subring
of A if B is a subgroup of (A,+), is closed under multi-
plication, and contains the multiplicative identity. Note
that B is also a ring.

Example. R × R is a commutative ring, as is R × {0}.
However, R× {0} ⊂ R× R is not a subring.

Definition 10.5. Let f : A → A′ be a ring homomor-
phism. The kernel of f is

ker(f) = {x ∈ A : f(x) = 0}

Example. Let A be a commutative ring. Consider A[X].
Fix a ∈ A. The evaluation at a is the map

eva : A[X] −→ A

p(X) 7−→ p(a)

eva is a ring homomorphism. Note that

ker(eva) = {p(X) ∈ A[X] : a is a root}

Proposition 10.6. ∀x ∈ A a ring, 0 · x = 0 = x · 0.

Proof.

0 + 0 = 0

(0 + 0)x = 0x

0x+ 0x = 0x

0x = 0

and right-multiplication by 0 is similar. �

Definition 10.7. Let A be a ring. A two-sided ideal in
A is a subgroup I ⊆ A (w.r.t. (A,+)) such that ∀x ∈ A,

x · I ⊆ I ⊇ I · x

Note that in a commutative ring, an ideal is necessarily
two-sided.

Observation 10.8. Let f : A→ A′ be a ring homomor-
phism. Then ker(f) is an ideal.

10
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Proof. Since f is a homomorphism of abelian groups,
ker(f) is an abelian subgroup. We have that

f(xa) = f(x)f(a) = f(x) · 0 = 0

so xa ∈ ker(f); the proof for ax is similar. �

Claim 10.9. The intersection of any number of two-sided
ideals is again a two-sided ideal.

Definition 10.10. Let A be a commutative ring, a ∈
A,S ⊆ A. The ideal generated by a is the intersection of
all ideals in A containing a. Equivalently, it is

(a) := aA = {a · b : b ∈ A}

The ideal generated by S is the intersection of all ideals
in A containing S, or alternatively,

(S) :=
∑
s∈S

sA

Definition 10.11. A principal ideal is an ideal generated
by a single element.

Theorem 10.12. Any ideal in Z is principal.

Proof. This follows from the fact that every subgroup of
Z is generated by a single element. �

Theorem 10.13 (Unique Factorization Theorem).

Example. Consider the ring A = {a + b
√

6 : a, b ∈ Z}.
Factorizations are not unique in A (6 =

√
6 ·
√

6 = 2 · 3).
Moreover, note that A is “missing” gcd(

√
6, 2) =

√
2 and

gcd(
√

6, 3) =
√

3. However, we do have the ideals (
√

6, 2)
and (

√
6, 3); they are “ideal elements” of A.

Lecture 11 — 10/11/10

Definition 11.1. Let A be a ring. The group of units of
A is the set

A∗ = {x ∈ A : ∃x−1, x · x−1 = 1 = x−1 · x} ⊆ A

Note that 1 ∈ A∗ and that A∗ is closed under multiplica-
tion, so A∗ is indeed a group.

Example.

1. Consider the matrix ring Mn(A) where A is a com-
mutative ring. We have Mn(A)∗ = GLn(A).

2. Let A ∈ {Q,R,C}. Then A∗ = A− {0}.

3. Z∗ = {±1}.

4. Consider the polynomial ring A[X]. A[X]∗ = A∗.

Definition 11.2. A field is a commutative ring F such
that F ∗ = F − {0} and 0 6= 1.

Theorem 11.3. Let A be a ring, I ⊆ A a subset. I is
the kernel of a ring homomorphism iff it is a two-sided
ideal.

Proof. Let

I ⊆ A f−−→ A′

where I = ker f = {a ∈ A : f(a) = 0}. Then I is a
normal abelian group under +, and is closed under left
and right multiplication; it is a two-sided ideal.

Conversely, let I ⊆ A be a two-sided ideal. Consider
A/I, a quotient of abelian groups under addition. Then
we have a natural group homomorphism

A
f−−→ A/I

such that ker f = I. It remains to be shown that we can
make A/I a ring which makes f into a ring homomor-
phism with kernel I. We know that an element a ∈ A/I
is a coset of the form a+ I. Consider another coset b+ I.
If we want f to be a ring homomorphism, we must require

f(a · b) = a · b+ I = (a+ I) · (b+ I) = f(a) · f(b)

This yields a definition of multiplication in A/I

(a+ I) · (b+ I) = a · b+ I

We must show that this operation is well-defined. Let
a + I = α + I and b + I = β + I. Then ∃i1, i2 ∈ I :
α = a+ i1, β = b+ i2. This yields

αβ = ab+ (ai2 + i1b+ i1i2)

But ai2 + i1b+ i1i2 ∈ I since I is a two-sided ideal. So

(α+ I) · (β + I) = αβ + I = ab+ I = (a+ I) · (b+ I)

as desired. �

Definition 11.4. Let I ⊆ A be an ideal of a commuta-
tive ring. By Theorem 11.3, there is a ring structure on
A/I, termed the quotient ring.

Note. Every ring A has at least two two-sided ideals, the
zero ideal (0) = {0} and the unit ideal A. In particular,
A = (u) for any u ∈ A∗. Moreover, note that A/(0) = A
and A/(1) = {0}. An ideal that is not the unit ideal or
the zero ideal is called a proper ideal.

Theorem 11.5 (First Isomorphism Theorem). Let f :
A → A′ be a ring homomorphism, and write I = ker(f).
Let J ⊆ I be an ideal. We have by the previous theorem
a homomorphism ϕ : A → A/J . Then there is a unique
homomorphism f̄ : A/J → A′ such that f̄ ◦ ϕ = f .

A
f
//

ϕ

��

A′

A/J

f̄

	
==

and if J = I and f is surjective, then f̄ is an isomorphism
yielding A/ ker(f) ∼= A′.

11
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Definition 11.6. An integral domain is a commutative
ring A where c, d ∈ A : c·d = 0 =⇒ c = 0 or d = 0. Equiv-
alently, we say A satisfies a cancellation law, wherein
a, b, c ∈ A : c 6= 0, c · a = c · b =⇒ a = b.

Definition 11.7. Let A be a ring, d ∈ A. We call d a zero
divisor if ∃c 6= 0 : cd = 0 (in this case, d is a right zero
divisor). Note that an integral domain is a commutative
ring with no zero divisors.

Definition 11.8. A principal ideal domain (PID) is an
integral domain in which every ideal is principal.

Example. Let S = {a, b : a, b 6= 0} ⊆ Z. Then we can
write

(S) = {ar + bs : r, s ∈ Z}
= gcd(a, b) · Z

So Z is a PID.

Note. If A is commutative, S = {a1, . . . , an} ⊆ A, then
(S) = {

∑n
i=1 riai : ri ∈ A}.

Example. Any field F is a principal ideal domain, since
each field has only the zero ideal and the unit ideal by
definition, both of which are principal.

Definition 11.9. Let A be a PID, a, b ∈ A. Suppose
that (a) = (b). Then a ·A = b ·A, so a = b ·m, b = a ·n for
some m,n ∈ A. So a = a · n ·m, which yields, by cancel-
lation, 1 = n ·m ⇐⇒ n = m−1. This means that n and
m are units and yields an equivalence relation a ∼ b iff
a = u · b where u ∈ A∗. We call this relation association,
and we note that this partitions A into associate classes
of A, which we denote a ·A∗.

Example. Let A = Q[
√

2] = {a+ b
√

2 : a, b ∈ Q}. Then
A is closed under multiplication

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (bc+ ad)
√

2

and A is a field, since (a+ b
√

2)(a− b
√

2) = a2− 2b2 6= 0,
and

1

a+ b
√

2
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
+

b

a2 − 2b2

√
2

Claim 11.10. Consider the integral domain Q[X] and
the ideal (X2−2) = (X2−2)Q[X]. Then Q[X]/(X2−2) =
Q[
√

2].

Proof. Recall the evaluation homomorphism, which here
is surjective

ev : Q[X] −� Q[
√

2]

X 7−→
√

2

We have

ker ev = {f(X) ∈ Q[X] : f(
√

2) = 0}

So for any polynomial
∑d
n=0 anX

n, we must have
√

2 as
a root.

d∑
n=0

an(
√

2)n =
∑
m

a2m2m +
∑
m

a2m+12m
√

2 = 0

So if
√

2 is a root, then −
√

2 is also a root. So
(X2 − 2)|f(X). By the First Isomorphism Theorem, we
get Q[X]/ ker ev ∼= Q[

√
2]. �

Lecture 12 — 10/14/10

Definition 12.1. A ring A′ that contains A as a subring
is a ring extension of A. The adjunction of a new element
α to a ring A is

A[α] =


n∑
i=0

riα
i : n ∈ N, ri ∈ A


This is the image of the “evaluation” of R[X] at α.

Remark. Begin with a commutative ring, say Q. Sup-
pose we want to construct a ring containing elements sat-
isfying a given relation, say X100 = 0, X99 6= 0. Adjoin
an unknown (a variable) X to form a polynomial ring,
Q[X], and then quotient by the desired relation.

ϕ : Q[X] −� Q[X]/(X100)

X 7−→ θ

X100 7−→ θ100 = 0

We have

ker(ϕ) = (X100) = {X100 · P (X) : P (X) ∈ Q[X]}

Note that X99 6= X100P (X), so this condition is always
satisfied.

If, on the other hand, we want to impose a relation
a = 0 on a ring A for some a ∈ A, we take the quotient
ring A/(a), the elements of which are b = b+(a), to which
every element b+ar is mapped (for some fixed b ∈ A and
any r ∈ A). Note also that if uv + w = a for u, v, w ∈ A,
then

uv + w = uv + w = a = 0

Definition 12.2. Consider the diagram

Q[X]

����

// // Q[i]

Q[X]/(X2 + 1)

∼=
	

88

12
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which is commutative by the First Isomorphism Theorem.
The Gaussian numbers are the ring

Q[i] = {a+ bi : a, b ∈ Q}

And the Gaussian integers are the ring

Z[i] = {a+ bi : a, b ∈ Z}

Note that
R[i] ∼= C

Example. Consider the diagram

Q[X,Y ]

h
����

// //

	

Q[
√

2,
√

3]

Q[X,Y ]/(X2 − 2, Y 2 − 3)

∼=

55

where we have

ker(h) = (X2 − 2, Y 2 − 3)

= {(X2 − 2)P (X) + (Y 2 − 3)Q(X)}

and h(X) = θ2, h(Y ) = θ3. Then h(X2 − 2) = 0 =⇒
θ2

2 − 2 = 0 and h(Y 2 − 3) = 0 =⇒ θ2
3 − 3 = 0.

Example. Suppose we want to give 2 ∈ Z an inverse;
that is, we want X : 2X − 1 = 0. Take the quotient

Z[X]/(2X − 1) ∼= Z[
1

2
]

which is the smallest subring of Q containing 1
2 .

Example. In general, if a ∈ A a commutative ring, we
can “invert” a by taking

A[X] −� A[X]/(aX − 1)

x 7−→ a−1

Note that if a = 0, we get

A[X]/(−1) = A[X]/A[X] = (0)

Definition 12.3. A monoid is a set with an associative
composition law and an identity, but not necessarily hav-
ing inverses.

Example. Q[i] is a field. Consider the ring homomor-
phism N : Q[i]− {0} −→ Q>0

N(a+ bi) := ‖a+ bi‖ = (a+ bi)(a− bi) = a2 + b2

which is called the norm. We also have a similar map
N : Z[i] − {0} −→ Z>0; in this case, N is a monoid
homomorphism with respect to multiplication. Elements
of Q[i]− {0} are invertible

(a+ bi)−1 =
1

a+ bi
=

a

N(a+ bi)
− b

N(a+ bi)
i

and both Z[i] and Q[i] are integral domains; they are sub-
rings of fields, and all fields are integral domains.

Proposition 12.4. Z[i] is a principal ideal domain.

Proof. Let I ⊂ Z[i]. We want to find γ ∈ Z[i] such that

I = (γ) = γ · Z[i]

We will follow the proof that Z is a PID. Let J ⊂ Z be
a nonzero ideal, a ∈ J . Then |a| ∈ Z>0, and recall that
the norm N is a homomorphism with respect to multipli-
cation. Find a nonzero element a ∈ J of smallest norm.
Now take any b ∈ J . We want to show that a |b. We can
write b = ma+ r, 0 ≤ |r| < |a|. Then r = b−ma ∈ J . If
r 6= 0, then a was not minimal. ⇒⇐. Note also that

b

a
=
ma

a
+
r

a
= m+

r

a

which is to say that any rational can be written as an
integer plus a rational of norm < 1.

Now let us prove the claim for the Gaussian integers.
Geometrically, we see that ∀g ∈ Q[i],∃m ∈ Z[i] : g−m ∈
Q[i] has norm N(g −m) < 1. We can choose g = a+ bi,
and m = a′ + b′i, and |a′ − a| ≤ 1

2 , |b
′ − b| ≤ 1

2 .

Let I 6= (0) be an ideal in Z[i] and let γ = a+ bi ∈ I
of smallest norm N(γ) = a2 + b2. Let η ∈ I; we want to
show that γ |η. Let g = η

γ . We know g = m+r, m ∈ Z[i],

r ∈ Q[i] : N(r) < 1. Multiplying by γ, we get

γg = η = γm+ γr

Note that N(γr) = N(γ)N(r) < N(γ). But we have
γr = η − γm ∈ I, in which γ was chosen to have mini-
mal norm. ⇒⇐. So η | γ, and hence Z[i] is a principal
ideal. �

Proposition 12.5. If a |n, then the map Z/nZ −� Z/aZ
given by xn 7→ xa is a ring homomorphism.

Theorem 12.6 (Chinese Remainder Theorem). Let
a, b ∈ Z such that gcd(a, b) = 1 (that is, a and b are co-
prime). Write n = ab. Then ∃s, t ∈ Z : 1 = sa+tb. Then
the map

Z/nZ −→ Z/aZ× Z/bZ
xn 7−→ (xa, xb)

is a ring homomorphism. Moreover, it is an isomorphism,
and its inverse is given by (ua, vb) 7→ sav + tbun.

13
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Lecture 13 — 10/19/10

Theorem 13.1 (Correspondence Theorem). Recall the
canonical map

ϕ : A −� A/I

for an ideal I ⊆ A a ring. Let A = A/I. Then there is a
bijection

{J ⊆ A : J ⊇ I} ←→ {J ⊆ A}

where J and J are ideals of A and A respectively; that is
to say, a bijection between ideals in A containing I and
ideals in A. This bijection is given by

J 7−→ ϕ(J) J 7−→ ϕ−1(J)

Note. J is a collection of I-cosets of A, and J is the
union of the I-cosets in J , where J ↔ J . Note also that
I ⊆ J , I ↔ {0}, and {0} ⊆ J .

Proof. �

Let f : R � R′ be a surjective ring homomorphism.
Then the ideals in R containing ker f and the ideals in
R′ biject by the First Isomorphism Theorem. R → R/I,
R/I ∼= R′, f : R� R′.

Definition 13.2. Let R be a ground ring, and consider
rings A that are equipped with a ring homomorphism
s : R→ A. The pair (A, s) is called a R-algebra. With s,
called the structure homomorphism, understood, we say
that A is an R-algebra.

Definition 13.3. An R-algebra homomorphism is a ring
homomorphism h : A → A′ between R-algebras that
makes the following diagram commutative.

A
h // A′

R

s

OO

s′

�
>>

which is to say that h preserves the structure homomor-
phisms.

Example. A structure homomorphism is not, in general,
unique. However, there is exactly one homomorphism
Z → A for any ring A, so every ring A is a Z-algebra,
with a uniquely determined structure.

Example. R = C, (z + 0x+ · · · )C[X]

Definition 13.4. Let A be an R-algebra, a ∈ A. The
couple (A, a) has the free property if for every couple
(A′, a′), an R-algebra and an element, there is a unique
R-algebra homomorphism A→ A′ given by a 7→ a′. The
free property is a universal property.

Observation 13.5. Consider (A, a) = (R[X], X). We
want to find a unique R-algebra homomorphism f that
makes the following diagram commutative:

R[X]
f
// A′ 3 a′

R

OO <<

Define f by

f

 d∑
i=0

riX
i

 =

d∑
i=0

s′(ri)(a
′)i ∈ A′

f is the unique R-algebra homomorphism sending
X 7→ a′.

r
4 &&

∈ R[X]
f
// A′ 3 s′(r)

r
_

OO

∈ R

s

OO

s′

<<

3 r
:

==

The freeness property completely characterizes (R[X], x);
it is the unique R-algebra such that (R[X], x) satisfies
freeness.

Proposition 13.6. Suppose that A1, A2 are R-algebras
such that (A1, a1) and (A2, a2) both satisfy freeness. Then
there exists a unique R-algebra homomorphism A1 → A2

given by a1 7→ a2, and this homomorphism is an isomor-
phism.

Proof. Considering each (Ai, ai) with the free property
in turn, and the other (Aj , aj) as an arbitrary couple for
which the free property must be satisfied, we get unique
functions f, g as follows:

A1
f
// A2 A1 A2

g
oo

a1
� // a2 a1 a2

�oo

Then taking (Ai, ai) as both the the couple satisfying the
free property and the arbitrary couple for with the prop-
erty is satisfied, we find that the identity homomorphisms
A1 → A1 and A2 → A2 are unique. So f ◦ g ≡ id2 and
g ◦ f ≡ id1. �

Remark. Thus, the polynomial ring R[X] is character-
ized as the unique R-algebra such that (R[X], X) satisfies
freeness.

Observation 13.7. Now let R be a commutative ring,
S ⊆ R a subset. Consider the collection of R-algebras A
such that the image of S under the structure homomor-
phism is invertible. We want to find a universal object in
this collection; that is, we want an R-algebra S−1R such
that

14
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1. The image under the structure homomorphism
s : R→ S−1R is invertible.

2. For every R-algebra A in the collection given by
the above property, there is a unique R-algebra ho-
momorphism such that the following diagram com-
mutes:

S−1R // A

R

OO

�
<<

Example. Let S = {r} ⊆ R; let us invert r. Take

S−1R = R[X]/(rX − 1) =: R[X]

If A is in our collection, then we have

rX − 1
� // 0

R[X]
∃!f

//

π

## ##

A

R

OO

s //

sA

;;

R[X]

∃!ϕ

OO

where f is given by the freeness property described above,
and ϕ is given by the First Isomorphism Theorem. The
same method as with polynomial rings shows that S−1R
satisfying the property of being a universal object in our
collection uniquely characterizes it.

R

{{ ##

(S−1R)1

id
99

oo ! // (S−1R)2

id
ee

Observation 13.8. Does S−1R always exist? We have
shown that it does if |S| = 1. If S = {r1, r2, . . . , rn} is
finite, inverting S is equivalent to inverting the product
r1r2 · · · rn.

For arbitrary S, we can still find S−1R. Take the
polynomial ring

R[xσ : σ ∈ S]/I

where I = (xσ − 1 : σ ∈ S).

Example. Let R = Z, S = Z− {0}. Then S−1R = Q.

Lecture 14 — 10/21/10

Remark. Let S ⊆ A be a subset of a commutative ring
with unit. Recall that S−1A is an A-algebra which is

the universal solution to the problem of inverting the ele-
ments of S. Let us determine the kernel of the A-algebra
homomorphism

A −→ S−1A

Let us first consider the case where S is a monoid.

Example. Let S = A−{0}, 1 6= 0. We know that 1 ∈ S.
It is clear that S is a monoid iff A is an integral domain;
that is to say, if and only if A has no zero divisors.

Proposition 14.1. Let S0 ⊆ A any subset. Let

S = {s1 · · · sn : si ∈ S0}

be the monoid generated by S0. Then S−1
0 A ∼= S−1A.

Proof. This is clear; inverting individual elements yields
an inverse for their product, and inverting the product
yields inverses for the individual elements by unique-
ness. �

Theorem 14.2. Let S ⊆ A a commutative ring. Denote
the canonical map to S−1A by ϕ : A→ S−1A. Then

ker(ϕ) =
{
a ∈ A : ∃si ∈ S−1,

∏
si · a = 0

}
Proof. We will prove the theorem for the case where S
is finite. By the above proposition, we may equivalently
prove the case for S = {s}. We want to show that

ker(ϕ) = {a ∈ A : ∃n ≥ 0, sna = 0}

Recall the construction S−1A = A[X]/(sX−1). We have

A[X]/(sX − 1) = S−1A

A[X]

π

OOOO

A

ϕ

OO

oo

Thus we have a map ker(ϕ) → ker(π) = (sX − 1).
Choose a ∈ ker(ϕ). Then a 7→ (sX − 1)p(X) for some
p(X) ∈ A[X], where (sX−1)p(X) is some constant poly-
nomial a0. Let us write

p(X) = c0 + c1x+ · · ·+ cdx
d

So we have

a0 = c0sx+ c1sx
2 + · · ·+ cdsx

d+1 − c0 − c1x− · · · − cdxd

= −c0 + (c0s− c1)x+ · · ·+ (cd−1s− cd)xd + cdsx
d+1

This yields

c0 = −a0

c1 = sc0 = −sa0

c2 = sc1 = −s2a0

...

cd = scd−1 = −sda0

0 = scd = −sd+1a0

15
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Hence, we have sd+1a = 0, so

ker(ϕ) ⊆ {a ∈ A : ∃n ≥ 0, sna = 0}

The other inclusion is clear; this completes the proof. �

Definition 14.3. Recall that A − {0} is a monoid iff A
is an integral domain. Then the map ϕ : A→ S−1A has
ker(ϕ) = 0, and from these two facts it is clear that S−1A
is a field. S−1A is called the fractional field of the integral
domain A.

Definition 14.4. Let R be a commutative ring with unit.
An R-module M is an abelian group under + together
with a scalar multiplication operation · by R defined by

R×M −→M

(r,m) 7−→ r ·m

with

1. identity: 1 ·m = m;

2. associativity: r1 · (r2 ·m) = (r1 · r2) ·m; and

3. distributivity: r · (m+m′) = rm+ rm′

(r + r′) ·m = rm+ r′m

Example. A Z-module grants no extra structure; any
abelian group M is a Z-module, since 1 ·m = m, which
determines n ·m.

Example. If A is an R-algebra, it is also an R-module
by its own multiplication.

Definition 14.5. An R-module homomorphism is a map
f : M →M ′ between R-modules such that

1. f is an abelian group homomorphism.

2. f is homogenous with respect to scalar multiplica-
tion; that is, ∀r ∈ R,m ∈M,f(r ·m) = r · f(m).

Example. Let R be a ring. Define

Rn = R× · · · ×R︸ ︷︷ ︸
n

Rn is an R-module with addition and scalar multiplica-
tion as in vector spaces. Consider the set {εi}ni=1 given
by

εi = (0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0)

This set generates Rn as an R-module; that is, any
m ∈ Rn is a linear combination of {εi}ni=1; that is,

m =
∑

riεi

Definition 14.6. An R-module M is a free module if
it has a free basis, that is, a linearly independent finite
generating set {εi}ni=1. Equivalently, given any other R-
module N and set of elements yi ∈ N , there exists a
unique R-module homomorphism

M −→ N

εi 7−→ yi

Proposition 14.7. Rn is a free module.

Proof. Write m =
∑
riεi ∈ Rn. Define f : Rn → N by

f(εi) = yi. This forces

f(m) = f
(∑

riεi

)
=
∑

rif(εi) =
∑

riyi

since f is defined to be a homomorphism. Consider any
m′ =

∑
r′iεi. f is well-defined since m = m′ ⇐⇒ ri = r′i

for every i, and it is clearly unique. We should show in
more detail that f is an R-module homomorphism, but
we will not. �

Definition 14.8. Let A be a ring. A maximal ideal is a
proper ideal I ⊆ A such that @J ⊆ A an ideal such that

I ( J ( A

Proposition 14.9. Let A be a ring. An ideal I ⊆ A is
maximal iff A/I is a field.

Proof. A/I is a field iff the only ideals of A/I are (0)
and (1). The result is an easy consequence of the Corre-
spondence Theorem. �

Lecture 15 — 10/26/10

Remark. Let R be a ring, S ⊆ R a monoid. Recall that
S−1R is the unique R-algebra with structure homomor-
phism i : R→ S−1R such that i(S) is invertible. Writing
i(x) = x, we have

i(S) = {s−1a : s ∈ S, a ∈ R} ⊆ S−1R

Theorem 15.1. Let R ↪→ F ′ be an imbedding of R as
a subring in a field F ′. Let F be the field of fractions
of R. Then there is a unique injective homomorphism
α : F → F ′ making the following diagram commutative:

R� _

i

��

� � j // F ′

F
�.

α

	
>>

Proof. We define α by

a

s
7−→ j(a)

j(s)

The result is clear. �

16
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Definition 15.2. Let A be a ring. A prime ideal is an
ideal I ⊆ A such that ∀x, y ∈ A, if x · y ∈ I, then either
x ∈ I or y ∈ I.

Proposition 15.3. Let A be a ring. An ideal I ⊆ A is
prime iff A/I is an integral domain.

Proof. Suppose that I is prime, and let ϕ : A → A/I
denote our canonical map into the quotient ring. We will
denote ϕ(x) = x for any x ∈ A. Choose x, y ∈ A/I such
that xy = 0. Then we have xy ∈ ker(ϕ) = I. By primal-
ity, either x ∈ ker(ϕ) or y ∈ ker(ϕ). Thus, either x = 0 or
y = 0. The proof in the other direction is analogous. �

Example. In Z, the maximal ideals are precisely those
ideals generated by prime numbers p ∈ P

(2), (3), (5), (7), (11), . . .

The prime ideals are the same, along with (0), since Z is
an integral domain.

Example. Consider C[t]. The Fundamental Theorem of
Algebra states that C is algebraically closed; that is, ev-
ery nonconstant polynomial in C[t] has a root. It follows
that any monic polynomial p(t) of degree d > 0 can be
written

p(t) = (t− c1)(t− c2) · · · (t− cd)

Then it is clear that the maximal ideals of C[t] are

(t− c),∀c ∈ C

These, along with (0), are also the prime ideals. Note
that

C[t]/(t− c) ∼= C 3 c

C[t]

OO
::

3 t
B

AA

So the maximal ideals of C[t] correspond bijectively to
C− {0}. The group of units of C[t] is also

C[t]∗ = C∗ = C− {0}

Moreover, C[t] is a PID, as well as a unique factoriza-
tion domain, where every polynomial can be factored
into irreducible polynomials (t− c), c ∈ C and some unit
c∗ ∈ C[t]∗.

Observation 15.4. Let F be any field, and consider F [t].
The group of units F [t]∗ = F ∗ and the maximal ideals are
the monic irreducible polynomials in F [t].

Example. Let F = R. What are the irreducible polyno-
mials in R?

p(t) =

d∏
i=1

(t− ci) =

d1∏
i=1

(t− ri) ·
d2∏
j=1

[(t− cj)(t− cj)]

where d = d1 + d2 and ri are all the ci ∈ R. The max-
imal ideals in R[t] are those generated by (t − r) or by
(t− c)(t− c).

Example. Let C and consider the C-algebra

R := C([0, 1],C)

There is a natural C-algebra homomorphism, the
evaluation at x, given by

evx : R −→ C
f(t) 7−→ f(x)

The kernel of the evaluation map is given by

Ix := ker(evx) = {f(t) ∈ R : f(x) = 0}

Note that ∀f ∈ R, f − f(x) ∈ Ix ⇐⇒ f ∈ f(x) + Ix,
and hence R/Ix ∼= C. Thus, Ix is maximal. Since evx
is surjective, we have a map from [0, 1] to the maximal
ideals in R given by x 7→ Ix.

Example. Consider C[x, y], the polynomial ring in two
variables over the complex numbers. The maximal ideals
in C[x, y] are not principal, but the prime ideals, which
are the maximal ideals along with the zero ideal, are prin-
cipal. For any pair (a, b) ∈ C× C, consider the ideal

(x− a, y − b) ⊆ C[x, y]

Consider the evaluation homomorphism at a, b,

eva,b : C[x, y]→ C

we know that x − a, y − b ∈ ker(eva,b), and hence also
(x− a, y − b) ⊆ ker(eva,b). Consider p(x, y) ∈ ker(eva,b).
We can write

p(x, y) = p0,0 + p1,0x+ p0,1y + p1,1xy + · · ·

Substituting x = a + x′ and y = b + y′, expanding, and
then back-substituting x′ = x− a and y′ = y − b, we get

p(x, y) = p(a, b) + ca(x− a) + cb(y − b) + caa(x− a)2

+ cab(x− a)(x− b) + cba(x− b)(x− a)

+ cbb(x− b)2 + · · ·

which coincides with the Taylor expansion of p(x, y).
Since p(x, y) ∈ ker(eva,b), p(a, b) = 0. Hence,

(x− a, y − b) = ker(eva,b)

which means that

C[x, y]
eva,b

// //

����

C

C[x, y]/(x− a, y − b)

	
77

Hence, C[X,Y ]/(x − a, y − b) ∼= C, so (x − a, y − b) is
maximal.

17
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Example. The ideal (y−x2) is the set of polynomials in
the plane that vanish on the parabola y = x2.

Theorem 15.5 (Hilbert’s Nullstellensatz). All maximal
ideals in C[x1, . . . , xn] are of the form

(x1 − a1, x2 − a2, . . . , xn − an)

and hence are in bijection with elements of Cn.

Lecture 16 — 10/28/10

Theorem 16.1 (Hilbert’s Nullstellensatz). The maxi-
mum spectrum of C[x1, . . . , xn] is in bijection with Cn,
given by (a1, . . . , an)←→ (x1 − a1, . . . , xn − an).

Proof. By a proof analogous to that given in the ex-
ample from last lecture, we know that every ideal of
the form (x1 − a1, . . . , xn − an) is maximal. Now let
M ⊆ C[x1, . . . , xn] be any maximal ideal. Write

K = C[x1, . . . , xn]/M

and denote the canonical map into the quotient ring by

ϕ : C[x1, . . . , xn]→ K

We will consider K to be a C-algebra, a field extension,
a quotient, and a vector space over C. Consider the re-
striction of ϕ to the subring C[xi],

ϕi : C[xi]→ K

Suppose that kerϕi 6= (0). Let p ∈ kerϕi, p 6= 0. Since
K is not the zero ring, kerϕi 6= C[xi]. Then p is noncon-
stant, so ∃ai ∈ C : xi − ai | p, or p = (xi − ai)q for some
q ∈ C[xi]. So

ϕ(xi − ai)ϕ(q) = ϕ(p) = 0

Since K is a field, ϕi(xi − ai) = 0 or ϕi(q) = 0. By in-
duction on deg p, kerϕi is a maximal ideal and hence a
prime ideal (specifically, the ideal (xi − ai)).

It suffices now to show that kerϕi 6= (0). For if so, M
contains polynomials of the form xi−ai for all i ≤ n, and
hence M ⊆ (x1 − a1, . . . , xn − an), as desired. Suppose
kerϕi = (0). Then

C[xi] ∼= ϕi(C[xi]) =: C[x] ⊆ K

So K contains a sub-C-algebra isomorphic to the ring of
complex polynomials in one variable. Since C[x] is an
integral domain, denote its field of fractions

C(x) =

{
p(x)

q(x)
: p, q ∈ C[x], q(x) 6= 0

}
Since C(x) is a field, we can uniquely extend the ho-
momorphism C[x] ↪→ K to an injective homomorphism

C(x) ↪→ K. Hence, K also contains a sub-C-algebra iso-
morphic to C(x).

The field C[x1, . . . , xn], as a vector space over C, has
as a basis the set of all monic complex monomials in n
variables. Since C[x1, . . . , xn] � K, K is also generated
by a countable basis (in particular, the set of residues of
monic complex n-polynomials). We will show that the
C-vector space C(x) contains an uncountable basis, and
that this implies that C(x) is not isomorphic to any sub-
C-algebra of K.

Lemma 16.2. { 1
x−c}c∈C form a linearly independent set

in C(x).

Proof. Suppose that

0 = f(x) =

n∑
j=1

αj
x− cj

where the cj are distinct and where some αk 6= 0 Then

lim
x→ck

|f(x)| =

∣∣∣∣∣∣ lim
x→ck

αk
x− ck

+ lim
x→ck

∑
j 6=k

αj
x− cj

∣∣∣∣∣∣ =∞

and hence our set { 1
x−c}c∈C is indeed linearly indepen-

dent. �

Lemma 16.3. Let V be a vector space which admits a
finite basis {ej}. Then every set L ⊆ V of linearly inde-
pendent vectors is up to countable.

Proof. Let Vn = span({vj}j≤n), and let Ln = L ∩ Vn.
Then Ln ⊆ Vn is a linearly independent set of the finite
vector space Vn, and hence is finite. But L =

⋃
n∈N Ln,

and hence is countable or finite, as desired. �

This completes our proof. �

Lecture 17 — 11/2/10

Definition 17.1. We present some ideal-theoretic vocab-
ulary. Let R be an integral domain, a, b ∈ R, I, J ⊆ R
ideals.

• a is a unit if (a) = (1) = R.

• b is a multiple of a, and a a divisor of b, if (b) ⊆ (a).

• Similarly, J is a multiple of I and I is a divisor of
J if J ⊆ I.

• b is a proper divisor of a if (a) ( (b) ( (1).

• a is associated to b if (a) = (b).

Definition 17.2. Let R be an integral domain. An ele-
ment p ∈ R is prime if p |ab =⇒ p |a or p |b; that is, if (p)
is a prime ideal.

18
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Definition 17.3. Let R be an integral domain. An el-
ement p ∈ R is irreducible if p = a · b =⇒ p | a or p | b.
Equivalently, p = a · b implies that either a or b is as-
sociated to p, and the other element, either b or a, is a
unit.

Note. If p is prime, then p is irreducible. Moreover, in a
PID, if p is irreducible, then it is also prime.

Definition 17.4. Let I, J ⊆ R be ideals in an integral
domain. The greatest common divisor of I and J is a
common divisor of I and J such that every other com-
mon divisor divides it. It is given by

gcd(I, J) = (I, J)

the ideal generated by I and J .

Definition 17.5. Let R be an integral domain. A func-
tion

σ : R− {0} −→ N

is called a size function on R.

Definition 17.6. A Euclidean domain is an integral do-
main R with a size function σ such that the Archimedean
law holds.

Definition 17.7. The Archimedean law holds if ∀a, b ∈
R, a, b 6= 0, there is an equation in R of the form

a = mb+ r

where either r = 0 or σ(r) < σ(b).

Example. 1. R = Z, σ = ||.

2. R = K[t] for K a field, σ = deg.

3. Z[i], σ = ‖‖.

Example.

1. Consider the integral domain

R = Z[
√
−2] = {a+ b

√
−2 : a, b ∈ Z}

⊂ F = Q[
√
−2] = {a+ b

√
−2 : a, b ∈ Q}

R has a size function given by

σ(a+ b
√
−2) = a2 + 2b2 = (a+ b

√
2)(a− b

√
2)

2. R = Z
[

1+
√
−3

2

]
⊂ Q

[
1+
√
−3

2

]
Example (Eisenstein Ring). The Eisenstein Ring is the
ring R = Z[e2πi/3], the points of which correspond to the
hexagonal lattice in R. Its field of fractions Q[e2πi/3] is
dense in the complex plane.

The Eisenstein integers can be expressed as

a+ bω := a+ b

(
1

2
(−1 + i

√
3)

)
and a size function on Z[e2πi/3] is given by

σ(a+ bω) = |a+ bω|2

= (a+ bω)(a+ bω̄)

= a2 + ab(ω + ω̄) + b2

= a2 − ab+ b2

Proposition 17.8. Every Euclidean domain is a PID.

Proof. Let R be an ED, I ⊆ R a nonzero ideal. Let b ∈ I
be such that σ(b) is minimal among all nonzero elements
of I. Suppose a ∈ I. Then by the Archimedean law, we
have b = ma + r for σ(r) < σ(a) or r = 0. But we can-
not have σ(r) < σ(a) by minimality, so r = 0, and hence
I = (a), as desired. �

Definition 17.9. A unique factorization domain R is an
integral domain in which any nonzero element can be ex-
pressed as a product of irreducible elements uniquely, up
to order and multiplication by units.

Note. We note that the factorization necessarily termi-
nates. If a factorization never terminates, we are left with
an ever-ascending chain of principal ideals each properly
contained in the next

(a) ( (a0) ( (a1) ( · · ·

or
· · · |a2 |a1 |a0 |a

Hence, if this never occurs, factorization terminates.

Proposition 17.10. Every PID is a UFD.

Proof. Let R be a PID. First, we will show that there
are no ever-ascending chains of ideals in R. Suppose oth-
erwise. Then we have

I0 ( I1 ( I2 ( · · ·

and define

I∞ =

∞⋃
i=0

Ii

We claim that I∞ is an ideal. Say x, y ∈ I∞. Then
x ∈ Im and y ∈ In for some ideals Im, In in our chain;
assume WLOG that m ≤ n. So x, y ∈ In ⊂ I∞, and
hence rx+ sy ∈ In ⊂ I∞.

Since R is a PID, we know that I∞ = (d) for some
d ∈ R. But then d ∈ In for some n. Then (d) ⊆ In ⊆
I∞ = (d). ⇒⇐. Thus, PIDs have terminating factoriza-
tion.

19



Math 122—Algebra I Max Wang

It remains to be shown that such factorizations are
unique. Let a ∈ R, a 6= 0, and suppose that

p1 · · · pn = a = q1 · · · qn

Write p = p1. Since p | a, we have p | q1 · · · qn. In a PID,
every irreducible element is prime; hence, p | qi for some
i. But since qi is also prime, we have p = qi · u, where
u is a unit. Proceeding by induction, this completes our
proof. �

Lecture 18 — 11/9/10

Remark. Recall that abelian groups are precisely the
Z-modules.

Definition 18.1. The exponent of an abelian group A is
a positive integer e such that ∀a ∈ A, e · a = 0. If we so
desire, we can take e to be minimal.

Definition 18.2. A p-group is a finite group of order pk

for any k ∈ N.

Theorem 18.3 (Fundamental Theorem of Finite Abelian
Groups). Any finite abelian group A of order n has expo-
nent n. We can factor

n = pr11 · · · prss

Then there are unique subgroups of A of exponent prii for
i = 1, . . . , s,

Api ⊂ A

such that

A =

s∏
i=1

Api = Ap1 ⊕ · · · ⊕Aps

where each Api is a pi-group. The Api are called the
pi-primary components of A.

Remark.

1. We allow the possibility that some of the p-primary
components of A are trivial, meaning that n was
not minimal.

2. Since A is finite abelian, then the p-primary com-
ponents are examples of p-Sylow subgroups (to be
defined later).

Claim 18.4. Let A be a finite abelian group of order n.
Then A is a Z/nZ-module.

Proof. Note that n ·A = 0. Let a ∈ A, and let

Z 3 m 7−→ m ∈ Z/nZ

Define m · a = m · a. Every representative of m is of the
form m′ = m+ tn for some t ∈ Z, whereupon we have

m′ · a = (m+ tn) · a = m · a+ tn · a = m · a

and hence our module structure is well-defined, and, of
course, necessarily unique. �

Proof. (of Fundamental Theorem) Consider Z/nZ,
where n = pq for p, q prime, p 6= q. Let Z/nZ, n = pq
where p, q ∈ P, p 6= q. We know that

∃s, t ∈ Z : 1 = sp+ tq

Write
εp = tq εq = sp

In Z/nZ, we have
εp · εq = 0

since pq = n = 0, and we say that εp, εq are orthogonal.
Moreover, 1 = εp + εq =⇒ εp = ε2p + εpεq, and from sym-
metry and orthogonality, we get both

ε2p = εp and ε2q = εq

We say that εp and εq are idempotent. We refer to our
formula

1 = εp + εq

as an orthogonal idempotent decomposition of unity.
Now let A be an abelian group of order n. Define

Ap := εp ·A Aq := εq ·A

We know from our decomposition that

a = εpa+ εqa

so A = Ap + Aq. Suppose a′ ∈ Ap ∩ Aq ⊂ A. Then
a′ = εpap = εqaq, for ap, aq ∈ A. We claim that a′ = 0:

a′ = εpap = ε2pap = εpεqaq = 0

So A = Ap ⊕Aq. We note that Ap is of exponent p:

pAp = p · εpA = {p · tq · a : a ∈ A} = {tn · a : a ∈ A} = 0

This same argument holds for n = prqs, since pr, qs

are coprime and hence ∃u, v ∈ Z : 1 = upr + vqs. An
inductive argument yields our desired result. �

Definition 18.5. Let G be a finite group of order

|G| = pe ·m

where p prime, gcd(m, p) = 1. A p-Sylow subgroup of G
is a subgroup H ⊆ G of order |H| = pe. Equivalently, it
is a p-group of index coprime to p.
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Theorem 18.6 (Sylow Theorems). Let G be a finite
group of order n = pe ·m, gcd(p,m) = 1. Then

1. (Existence). The number νp of p-Sylow subgroups
of G is such that

(a) νp ≡ 1 (mod p)

(b) νp |m

2. (Conjugacy). All p-Sylow subgroups of G are con-
jugate.

3. (Intersection). If K ≤ G, there is a p-Sylow sub-
group H ≤ G such that K ∩ H ⊆ K is a p-Sylow
subgroup of K.

Example. Consider D2p for p > 2 prime. We can write

|D2p| = p · 2

where we have e = 1,m = 2. D2p has at least one p-Sylow
subgroup, namely the rotational subgroup 〈r〉 = Cp. By
the Sylow theorems, the total number νp of p-Sylow sub-
groups satisfies νp |2, and hence νp = 1 or νp = 2. Since
also νp ≡ 1 (mod p), and since p > 2, we have must have
νp = 1.

We can also consider

|D2p| = 2 · p

and examine the 2-Sylow groups, which in this case are
necessarily cyclic of order two. Our conditions on ν2

are ν2 | p, which yields ν2 = 1 or ν2 = p, and ν2 ≡ 1
(mod 2), which yields no additional information. How-
ever, we know that each flip subgroup is a cyclic group of
order 2, and hence ν2 = p.

Lecture 19 — 11/16/10

Definition 19.1. Let G be a group, S ⊆ G a subset.
The normalizer of S is the subgroup

N(S) = {g ∈ G : gSg−1 = S}

If S ≤ G, then N(S) is the largest subgroup of G such
that S CN(S).

Proof. (of the Sylow Theorems). Define the collection

X = {S ⊆ G : |S| = pe} ⊆ P(G)

G acts on X by left-multiplication. Note that

|X| =
(
n

pe

)
=
n · (n− 1) · · · (n− k) · · · (n− pe + 1)

pe · (pe − 1) · · · (pe − k) · · · · · · · · · · · · 1

=

pe−1∏
k=0

n− k
pe − k

We claim that if p | n − k, then also p | pe − k the same
number of times. Let us write k = pf l, where p - l. Then
f < e. Hence, pf |n − k and pf | pe − k, but pf+1 -n − k
and pf+1 - pe − k. Thus, |X| is coprime with p. We can
decompose X into disjoint orbits

X = O1 t · · · t Oµ

And we know that

|X| =
∑
|Oi| 6≡ 0 (mod p)

So there is one orbit O with order not divisible by p. By
definition, G acts on O transitively. Take U ∈ O, (so
U ⊆ G). Consider the stabilizer

GU = {g ∈ G : g · U = U ⊆ G} ≤ G

The elements of GU fix U , but may “rearrange” the ele-
ments of U .

Consider, then, the action of GU 	 U ⊆ G by left-
multiplication. The orbits under this action are the right-
GU -cosets. Note that the stabilizer for any u ∈ U is
trivial, which means there is only one orbit, and hence
|U | = |GU |. Alternatively, we have, for some M ∈ N,

pe = |U | =
∑
|GUu| = M |GU |

By the orbit-stabilizer theorem, we have

|G| = |GU | · |O|

where |GU | is a power of p, |O| is not divisible by p, and
|G| = pe ·m such that m 6≡ 0 (mod p). So |GU | = pe is
our p-Sylow subgroup, and |O| = m.

The subgroups conjugate to H := GU are p-Sylow
and correspond bijectively to the points of O. For say
U,U ′ ∈ O. Then ∃g ∈ G : gU = U ′. We claim that g
conjugates GU and GU ′ =: H ′; we have

gHg−1U ′ = gHg−1gU = gHU = gU = U ′

Conversely, if H ′ = gHg−1, take U ′ = gU . Then we have
H ′ = GU ′ .

Let K ≤ G be any subgroup. Restrict the action of
G on O to an action K on O. (Note that we have chosen
one orbit O out of potentially many possibilities; we will
show later that there is only one such viable orbit.) We
can show there exists one orbit OK , |OK | 6≡ 0 (mod p)
(since |O| is coprime with p and O is a disjoint union of
K-orbits).

We repeat our argument for K. Write

|K| = pe
′
·m′
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where gcd(m′, p) = 1. Note that OK ⊆ O. So, choosing
UK ∈ OK , and recalling the action of K ≤ G on it, we
have

|K| = |KUK | · |OK |
As before, HK := KUK is a p-Sylow subgroup of K. We
can also consider UK ∈ O, where it is acted on by G.
Then we find that

KUK = GUK ∩K

which proves (3).
Since UK ∈ O, the stabilizer GUK is conjugate to the

p-Sylow H ≤ G described earlier. Thus, given any K ≤ G
and recalling our p-Sylow H ≤ G, then there exists a p-
Sylow conjugate to H such that its intersection with K
is p-Sylow in K.

Now apply this result to K a p-Sylow in G. There is
a p-Sylow H ′ in G conjugate to H such that H ′ ∩K is a
p-Sylow of K. So H ′ = K. Hence all p-Sylow groups are
conjugate, and hence our choice of orbit O is unique; this
proves (2).

Now define

Y = {H ≤ G : |H| = pe}

G acts on Y by conjugation. Let H ∈ Y . The normalizer
of H is given by

N(H) = {g ∈ G : gHg−1 = H}

and since all p-Sylows are conjugate, we have that
G/N(H) ∼= Y by the map

gGH 7−→ gHg−1 = gN(H)

Thus we have

νp = |Y | = [G : N(H)]

and hence νp |m, since H CN(H) and |H| = pe. Restrict
the action of G to H. Let H ′ ∈ Y such that H fixes H ′.
Then both

H ≤ N(H ′) and H ′ CN(H ′)

H and H ′ are p-Sylow groups in N(H ′) and hence con-
jugate; since H ′ is normal, H = H ′. So {H} is the only
singleton orbit of the action under H. Since all other
orbits have order dividing |H| = pe,

νp = |Y | ≡ 1 (mod p)

This completes the proof. �

Example. Let G be a group, |G| = 15 = 5 · 3. The 3-
Sylows and 5-Sylows are all cyclic. Let us first determine
the 3-Sylows subgroups. We know that ν3 ≡ 1 (mod 3)
and ν3 | 3; hence, ν3 = 1. Since there is only one, it is
normal. We have the same result for the 5-Sylows. So
G ∼= C3 × C5.

Example. Now take |G| = 6. We have ν3 = 1, yielding
C3 C G. If ν2 = 1, we get C6 C G, and if ν2 = 3, we get
S3 ≤ G.

Lecture 21 — 11/23/10

Definition 21.1. Let M be a module. We call a sub-
group N ≤ M a submodule if it is closed under scalar
multiplication. Note that a submodule is also a module.

Definition 21.2. Let M be a module, M ′ ≤ M a sub-
module. The quotient group M/M ′ is equipped with
scalar multiplication, defined in the natural way by

r(m+M ′) = rm+M ′

for r ∈ R. The resulting module M/M ′ is called a
quotient module.

Claim 21.3. The natural map M
π−→ M/M ′ is an R-

homomorphism.

Proof. This results directly from the definitions. ∀r ∈ R,
∀m ∈M ,

π(rm) = rm+M ′ = r(m+M ′) = rπ(m) �

Definition 21.4. Consider the sequence of homomor-
phisms and R-modules

M1
f−−→M2

g−−→M3

This sequence is called exact if ker(g) = im(f). More
generally, a sequence

M0
f1−−−→M1

f2−−−→M2
f3−−−→ · · · fn−−−→Mn

is exact at Mi if ker(fi+1) = im(fi). This sequence is
exact if it is exact at every Mi.

Example. Consider an R-module homomorphism

M1
h−−→M2

The image h(M1) is indeed an R-module since ∀r ∈ R,
rh(M1) = h(rM1). Taking the quotient of M2 with
h(M1) yields the exact sequence

M1
h−−→M2

π−−→M2/h(M1)

Observation 21.5. Consider a sequence

0 −→M1
f−−→M2

This sequence is exact iff f is injective. Similarly, a se-
quence

M2
g−−→M3 −→ 0

is exact iff g is surjective.
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Definition 21.6. A short exact sequence is an exact se-
quence of the form

0→M1
f−−→M2

g−−→M3 → 0

If we consider M1 ⊆M2, we get M3
∼= M2/M1 (or, more

generally, M3
∼= M2/f(M1)).

Observation 21.7. If the sequence

M1
f−−→M2

g−−→M3 −→ 0

is exact, we know that M3
∼= M2/f(M1). On the other

hand, if the sequence

0 −→M1
f−−→M2

g−−→M3

is exact, then M1
∼= ker(g).

Remark. Recall that a free R-module of rank n is an
R-module

F ∼= Rn = R⊕ · · · ⊕R︸ ︷︷ ︸
n

which has a linearly independent finite generating set (or
basis) {εi}ni=1, where we can take

εi = (0, 0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0)

This is the unique R-module such that for any module
M and elements {mi}ni=1 ∈ M , there exists a unique R-
homomorphism g : F →M given by εi 7→ mi.

Observation 21.8. Suppose that the {mi}ni=1 above
form a generating set for M , which is to say that ∀m ∈M ,
∃ri ∈ R such that

m =

n∑
i=1

rimi

not necessarily uniquely. Equivalently, our map above
g : F →M given by εi 7→ mi is surjective, which is to say
that the sequence

F
g−−→M −→ 0

is exact.

Definition 21.9. The kernel of the map above is called
the R-module of relations. We note that

ker(g) =
{

(r1, . . . , rn) ∈ F :
∑

rimi = 0
}

is in correspondence with the linear combinations of {mi}
that are 0.

Example. Let R = Z, F = Z, M = Z/nZ. The element
m := 1 ∈ M generates M . m is not a free generator; for
instance, nm = 0 is a relation on M . The quotient map
F →M yields the exact sequence

Z π−−→ Z/nZ −→ 0

and we find that ker(π) = nZ.

Observation 21.10. We have the exact sequence

ker(g) ≤ F g−−→M −→ 0

Suppose that ker(g) has a finite generating set {µj}qj=1.
Let F ′ be the free R-module of rank q with basis ε′j , and
let A : F ′ → ker(g) be the unique map given by ε′j 7→ µj .
Then im(A) = ker(g), which yields an exact sequence

F ′
A−−−→ F

g−−→M −→ 0

We call F ′ the free R-module of relations and F the free
R-module of generators. As before, the map A completely
describes M .

Definition 21.11. A presentation of an R-module M
is an R-homomorphism A : F ′ → F such that
F/A(F ′) ∼= M , or equivalently, such that there exists an
R-homomorphism g : F →M making

F ′
A−−−→ F

g−−→M −→ 0

exact. To encompass our previous discussion, a presenta-
tion is a system of generators {mi}ni=1 ∈M and a system
of relations {

∑n
i=1 ri,jmi}qj=1 ∈ M , such that the maps

ε′j 7→
∑n
i=1 ri,jεi and εi 7→ mi given by A and g respec-

tively yield an exact sequence

F ′
A−−−→ F

g−−→M −→ 0

Since F ′ = Rq and F = Rn, we have

(ri,j) = A ∈ HomR(Rq, Rn) ∼= Mn×q(R)

Note. Given a matrix A ∈ Mn×q(R), we get an R-
module M with generating set of n elements and system
of relations generated by q elements. However, different
matrices A may give the same module M .

Definition 21.12. A cyclic R-module is an R-module
with a single generator.

Example. Let M be a cyclic R-module with generator
m ∈ M . Let g : R → M be the map given by r 7→ rm,
which is certainly surjective, and hence yields exactness
of the sequence

R
g−−→M −→ 0

ker(g) is an ideal in R. If it is principal, then n = 1 and
q = 1, so A is a 1× 1 matrix. So A = (α), α ∈ R, and we
have that

R
·α−−−→ R

g−−→M → 0
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is exact, which yields M ∼= R/αR.
However, ker(g) is not necessarily principal. Consider,

for instance, R = F = C[X,Y ], M = C, where scalar
multiplication is given by zm = zm, Xm = 0, Y m = 0.
Define g : R → M by p(X,Y ) 7→ p0m, which is certainly
surjective. Then

F
g−−→M −→ 0

is exact, with ker(g) = (X,Y ). Then we have F ′ = R2,
along with an exact sequence

F ′
A−−−→ F

g−−→M −→ 0

where A is given by ε′1 7→ X, ε′2 7→ Y , and hence has the
form

A = (X,Y )

Lecture 22 — 11/30/10

Recall that a finitely-generated R-module M has a pre-
sentation if there exists an exact sequence

F ′
f−−→ F

g−−→M −→ 0

where F ′ = Rn, F = Rm, with bases {ε′i} and {εj} re-
spectively, and where g maps {εj} to a generating set of
M . Then f is given by some m×n matrix in R, which is
referred to as the presentation of M . Note that a change
of basis for F ′ and for F changes the presentation matrix,
but not the presented module M .

Example. Let R = Z, and consider the presentation

A =

(
2 1
0 2

)
We have F ′ = F = Z2, with bases {ε′1, ε′2} and {ε1, ε2}
respectively, and our matrix provides

ε′1 7−→ 2ε1

ε′2 7−→ ε1 + 2ε2

So our module is given by

ε1Z× ε2Z = Z2/(ε′1Z, ε′2Z)

= Z2/(2ε1Z, (ε1 + 2ε2)Z)

Observation 22.1. Suppose the exact sequence of the
presentation of M is given by

Rn
A−−−→ Rn −→M −→ 0

and we have

A =


d1 0

. . .

0 dn



Then we find that

M = R/d1R×R/d2R× · · · ×R/dnR

Note that we can have this result even when the two free
modules are not of equal rank. If we can show that, for
some ring R, every matrix is diagonalizable, then we re-
alize every finitely-presented R-module as a product of
cyclic R-modules.

Note. Recall the elementary row and column on matri-
ces:

1. Add a scalar multiple of one row to another, or of
one column to another.

2. Interchange two rows or two columns.

3. Multiply a row or a column by a unit.

These operations do not change the image of a matrix,
and hence when applied to a presentation, do not change
the presented module.

Theorem 22.2. Any m × n matrix A with entries in Z
is diagonalizable as


d1

. . .

dr


0


Where the di are nonnegative and di |di+1.

Proof. This proof proceeds by induction. First, by in-
terchanging rows and columns and negating as necessary,
we take |a1,1| to be minimal among all values ai,j .

Choose a nonzero entry ai,1 in the first column, with
i > 1 (if such an entry does not exist, move on). By the
division theorem,

ai,1 = a1,1q + r

where 0 ≤ r < ai,1. Subtract q times the 1st row from
the ith row, which changes ai,1 to r. If r = 0, then we
have produced a zero in the ith row of the first column.
If r 6= 0, then r < ai,1, so we return to the first step
and move r (or some entry that has been produced that
is smaller than r) to a1,1. Eventually, we must produce
a column of all 0’s, because a1,1 is reduced each time,
and cannot be reduced past a1,1 = 1. By an analogous
method, we reduce the first row to all 0’s.

We are now left with the matrix
d1 0 . . . 0

0
...
0

 A′
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To achieve our desired divisibility, we want to have d1 |a′
for every entry a′ in A′. Suppose ∃ai,j , i, j 6= 1 such
that d1 - ai,j . Add the jth column of A to the 1st col-
umn; this produces ai,j in the first column. Applying the
division theorem produces a smaller entry; returning to
our first step and repeating, we eventually (after finitely
many steps) get a remainder of zero, which yields our
desired divisibility. Finally, induction on m,n completes
the proof. �

Observation 22.3. The statement of the theorem above
also holds for any Euclidean domain, which, like the ring
of integers, satisfies the Archimedean law.

Theorem 22.4 (Fundamental Theorem of Finitely-Gen-
erated Abelian Groups). Any finitely-generated abelian
group is isomorphic to Zk × Z/d1Z × · · · × Z/drZ where
di |di+1 and each di 6= 0.

Proof. Note that we assume that every finitely-
generated Z-module has a finite presentation (this stems
from the fact that Z is a noetherian ring). Every finitely-
generated abelian group is a finitely-generated Z-module.
Hence, by our assumption, it has a finite presentation,
which by diagonizability, can be expressed in the “better
diagonal” form shown above.

We can drop any column of all 0’s from this matrix,
along with any row or column with diagonal entry 1 (the
former represents a trivial relation; the latter, a trivial
generator). This yields a matrix given by a diagonal sub-
matrix followed by rows of 0’s. The module presented by
the diagonal portion is Z/d1Z× · · · ×Z/drZ; the module
presented by the rows of 0’s is Zk. �

Lemma 22.5 (Splitting Lemma). Let

0 −→ A
q−−→ B

r−−→ C −→ 0

be a short exact sequence. TFAE:

1. Left split: ∃t : B → A such that tq is the identity
on A.

2. Right split: ∃u : C → B such that ru is the identity
on C.

3. Direct sum: B ∼= A× C, where q is the natural in-
jection into A and r is the natural projection onto
C.

Definition 22.6. Let

0 −→ A
q−−→ B

r−−→ C −→ 0

be a short exact sequence. If any of the above conditions
hold, we say the sequence is split.

Lecture 23 — 12/2/10

Observation 23.1. We know that a finite abelian group
A is the direct sum of its p-primary components; that is,

A ∼=
∏
p∈P

Ap = A2 ×A3 ×A5 × · · ·

But A is also a Z-module, and hence

A ∼= Z/d1Z× Z/d2Z× · · ·

where |A| =
∏
i di and di | di+1. Combining these two

decompositions, we get

A2
∼= Z/2e2,1Z× Z/2e2,2Z× · · ·

A3
∼= Z/2e3,1Z× Z/2e3,2Z× · · ·
...

Observation 23.2. Now take R = k[T ] for k a field;
this is the polynomial ring in one variable T . k[T ] is a
Euclidean domain, given by size function

deg : k[T ]− {0} −→ N

and we can write

p(T ) = m(T )q(T ) + r(T )

and deg r < deg q if r 6= 0. Hence, matrices with coeffi-
cients in k[T ] can be divisibly diagonalized.

Let M be any finitely-presented k[T ]-module. Then

M = k[T ]/(f1)× k[T ]/(f2)× · · · × k[T ]r

where the fi’s are monic and fi |fi+1. Now consider some
specific quotient

k[T ]/(f) = k[T ]/f · k[T ]

We can uniquely factor f as

f = ge11 · g
e2
2 · · · geνν

where the gi’s are distinct monic irreducible polynomials,
ei ≥ 1. By linear independence,

(1) = (geii , g
ei+1

i+1 · · · g
eν
ν )

and by the Chinese Remainder Theorem,

k[T ]/(f) = k[T ]/(ge11 · · · geνν )

= k[T ]/(ge11 ) · · · k[T ]/(geνν )
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Observation 23.3. Now let V be a k[T ]-module; it is
also a vector space over k. Suppose dimV is finite. So
we can write

V ∼= k[T ]/(he11 )× · · · × k[T ]/(heµµ )

If instead we take V to be any finite-dimensional vec-
tor space over k and T : V → V any k-linear endomor-
phism. Then V has a k[T ]-module structure

p(T )(v) =

 d∑
i=1

aiT
i

 (v) =

d∑
i=1

aiT
i(v)

So we can express T as a block matrix

T =


B1

B2

. . .

Bµ


Let us decompose T . Take V = k[T ]/(f), where

f(T ) = Tn + an−1T
n−1 + an−2T

n−2 + · · ·+ a0

for ai ∈ k. V has a basis of 1, T, T 2, . . . , Tn−1, and so we
can express our endomorphism T as

T =



0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

0 0 1 . . . 0 −a3

...
...

...
. . .

...
...

0 0 0 . . . 1 −an−1


This is known as rational canonical form.

Theorem 23.4. Every endomorphism T : V → V of a
finite-dimensional vector space can be expressed as a ma-
trix in rational canonical form.

Observation 23.5. Now take k = C, k[T ] = C[T ]. The
irreducible polynomials have the form T − λ, so we take

V = C[T ]/(T − λ)e

Writing X = T − λ, we have

C[X]/(Xe) = C[T ]/(T − λ)e

V has a basis 1, X,X2, . . . , Xe−1. Hence, we can write

X =


0
1 0

1 0
. . .

. . .

1 0



Since T = X + λI, we get

T =


λ
1 λ

1 λ
. . .

. . .

1 λ


This is called a Jordan block. Recalling our decomposi-
tion of any vector space, we get the upcoming theorem.

Theorem 23.6. If T : V → V is a linear endomorphism
of finite-dimensional vector spaces over an algebraically
closed field, there exists a basis such that T can be ex-
pressed in Jordan normal form.

Theorem 23.7. A finite abelian group A is cyclic iff

(∗) ∀p ∈ P, {a ∈ A : pa = 0} is either trivial or cyclic of
p-power order.

Proof. We can decompose A into p-primary subgroups

A ∼= Ap1 ×Ap2 × · · · ×Apν
where Api 6= {0}. We can further decompose

Ap = Z/pα1 × · · · × Z/pαn

and it is clear, then, that

{a ∈ A : pa = 0} = {a ∈ Ap : pa = 0}

=

n∏
i=1

{ai ∈ Z/pαi : pai = 0}

which yields our condition (∗). On the other hand, if A
satisfies (∗),

Api = Z/pαi

for αi ≥ 0. Moreover, we know

Z/pα1
1 × Z/pαnn ∼= Z/p1p2 · · · pn

which exhibits cyclicity, as desired. �

Corollary 23.8. Any finite subgroup of the multiplicative
group of a field is cyclic.

Proof. Let F be a field. We know F ∗ ≤ F is abelian.
Choose some finite subgroup A ≤ F ∗. We will show that
it satisfies (∗). Every element of the set

{a ∈ A : ap = 1}

is a root of the polynomial Xp − 1, of which there are
maximally p. This group is a p-group but has order ≤ p;
hence, it is either trivial or of order p and hence cyclic.
Our result follows from the previous theorem. �

Corollary 23.9. Let Fq for q prime. Then F∗q is cyclic
of order q − 1.
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