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Lecture 1 — 1/23/12

Example (Fields).
1. Q, the rational numbers
2. F, =2Z/pZ — F,, where ¢ = p"

3. C(t), C(ty,...,t,), the complex function fields of
one or more variables (where addition and multipli-
cation are defined pointwise as usual)

While in group theory, we often studied a group by ex-
amining its various subgroups, our primary tool in field
theory will be to take a ground field F' and to study its
extensions.

Definition 1.1. Let I be a field. A field extension of F'
is given by a field K with

Frc—sK

where F' is included in K and is closed under K’s field
operations and inverse. We denote the field extension

Definition 1.2. Two field extensions K/F and K'/F of
a ground field F' are isomorphic

K/F2K'|F
if dp : K — K’ such that we have the diagram

K-, K

I

F——=F

Definition 1.3. Let F' —— K be a field extension. We
say that an element o € K is algebraic over F' if « satisfies
a polynomial equation in K

ana” + ap_10" - daja+ay=0

where a; € F. Dividing by a,, we can assume the poly-
nomial to be monic. If a does not satisfy any such poly-
nomial, it is transcendental over F'.

Note that whether or not an element « is algebraic
depends not only on the extension field K but also on
the ground field F'. For example,

Example. Let K = C. Then 7i is transcendental over
Q but is algebraic over R.

Recall that
FIX]|={{a, X"+ - +a1X +ao:a; € F}

is the polynomial ring with coefficients in F.

Claim 1.4. Let FF — K be a field extension, o € K.
Consider the evaluation ring homomorphism given by

p: F[X] — K
X — «

Then « is transcendental over F' iff o is injective.

Proof. ¢ is injective iff ker ¢ = {0}; this means that «
does not satisfy any polynomials with coefficients in F,
and hence is transcendental. ]

Recall from ring theory that an ideal is any subgroup
of a ring that is closed under multiplication. We denote
an ideal generated by some element x by (z).

Definition 1.5. Let ' — K be a field extension, a« € K
algebraic over F. Since F[X] is a PI[EL we have

ker = ()

for some f € F[X] (we assume that f is monic). We call
f the irreducible polynomial satisfied by «/F. We also
define

degr a = deg f

The degree of an algebraic element is also dependent
on the ground field; for example,

Example. Let K = C and o = Vi = ¢™/*. In Q, «
satisfies the polynomial X* + 1, and we have

degga =4

In Q(¢) (the rationals with ¢ adjoined), « satisfies the
polynomial X2 — 4, and we have

degQ(Z) a=2

Definition 1.6. Let ' «—— K be a field extension,
a € K. Recall our evaluation map ¢ : F[X] — K. We
denote

Flo]=imp={8€e K:B8=ana" +---+ag,a; € F}

which is the smallest subring in K that contains both F'
and «. Similarly, let

F(a)

denote the smallest subfield of K containing F' and «.
We call these ring adjunction and field adjunction respec-
tively.

IPrincipal ideal domain; that is, a ring in which all ideals are generated by a single element. Recall that all fields and all rings F[X]

are PIDs.
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Observation 1.7. If « is transcendental over F', then we
have

Fla] = FX]

and
Fla) > F(X)

where F(X) denotes the field of rational functions with
coefficients in F'.

If «v is algebraic over F', ker ¢ = (f) is nonzero. Then
we have

Flo] = F(o) = F[X]/(f)

This makes F(a) a finite-dimensional vector space over
F with a basis of

where n = degp «, since these powers of « are those ze-
roed by the irreducible polynomial.

Definition 1.8. We say that a field extension F' — K
is algebraic over F' if every o € K is algebraic over F'. We
say F' — K is finite over F' if K is a finite-dimensional
F-vector space. Note that a field extension that is finite
over its ground field is also algebraic over that ground
field; however, the converse is not true in general.

Let FF —— K be a field extension, «, 8 € K. We will
ask three questions about the subfields of K generated by
a and f.

1. When is F(a) = F(8)? This is true, for instance,
if 3 =a+ 1. We can also consider less trivial ex-
amples; for instance, taking F' = Q, K = C, « the
root of the polynomial X3 — X +1, and 8 = o2, we
also have Q(a) = Q(8) (although this is far from
immediately clear).

2. When is F(«) & F(3) as extensions of F'?

3. When is F(a) = F(B) as extensions of F' via an
isomorphism a <+ 87 If a and g are both transcen-
dental, the the isomorphism is obvious. If they are
both algebraic, then the isomorphism holds iff the
monic polynomials satisfied by « and 8 over F' are
equal, yielding

Lecture 2 — 1/25/12

Definition 2.1. Let F be a field. There exists a canoni-
cal ring homomorphism

p:Z—F

The characteristic of F' is defined by

0 kerp={0}
p kero=(p)

char(F) = {

Note that the map ¢ is unique for each field F' and hence
commutes with inclusion; so, all field extensions of a given
ground field share the ground field’s characteristic.

Definition 2.2. If FF —— K is a finite field extension,
then the degree of the extension is the dimension of K as
an F-vector space, denoted

deg(K/F) = [K : F]

Note. If we have
F—K-—K'

then
[K':F] > [K : F]

and also
[K': F] > [K': K]

Claim 2.3. [K:F]=1 < K=F.
Proof. Immediate. ]

Proposition 2.4. Let F —— K be a field extension with
[K : F] = 2. If char(F) # 2, then
K=F@), 0*eF

Proof. Choose any o € K — F. Then since [K : F] = 2,
o and 1 are linearly independent. Then 1, a, ? are de-
pendent, and hence Jag, a1, as such that

a2a2 + a1+ ag
We know as # 0, so dividing by as,
a? +bia+byg =0

Since char(F) # 2, we have an element 271, so we can set

by
0= —
o+ 5
Then we have
b?
6% + (bop——)=0
4
where by — % € F. Hence, K = F(§) with 6% € F, as
desired. [

Note that we could abolish the restriction on charac-
teristic by demanding only that some quadratic polyno-
mial of § to be in F.

Proposition 2.5. Let F — K <« L where L/F is
finite. Then

[L:F)=|[L:K][K:F]
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Proof. Choose a basis ai,...,a, for L/K and another
basis f1,...,0m for K/F. We claim that the pairwise
products «;8; form a basis for L/F.
First, we will show these «;3; span. Let v € L. We
can write
Y=a101 + -+ apoy

where a; € K. But then we can write

a; = bi1B1 + -+ bimBm

where b;; € F'. Then we have

v= bilaif;)

Next, we show independence. Suppose we have

> bij(eiB)) =0

Defining a; as above, we get

Zaiai =0

But by the independence of the a; in L/K, we have
> iy =0
J

for every ¢, which yields b;; = 0, V%, j by the independence
of the 3; in K/F. This completes the proof. ]

Corollary 2.6. Let FF —— K be a finite field extension.
Then Va € K,
degp a|[K : F]

because we can write
F— Fla)— K

Theorem 2.7. Let F' — K be a field extension, and let
L C K be the subset of elements that are algebraic over
F. Then L is a subfield of K.

Proof. Take o, € L. We have the sequence of exten-
sions
F— F(a) — F(a, B)

It is obvious that if B/F is algebraic, then so is 8/F ().
Then F(«, ) is a finite extension over F', and hence every
v € F(a, B) is algebraic over F. [ |

Example. Let F' = Q, K = C. Set L = Q, the algebraic
closure of Q. We can factor polynomials completely in
this field.

We would like to know if the algebraic closure of a field
always exists. That is, given a field F', does there exist
an extension F' —— K such that any polynomial with co-
efficients in K factors completely in K (or, equivalently,
has a root in K).

Lecture 3 — 1/27/12

Example. Let a be the real cube root of 2, and let
w = e2™/3_ Define

o =« s = aw as = aw?
These are the roots of the polynomial 2> — 2. Note that

this polynomial is irreducible over Q, so we have
[Q(a;) - Q] =3

From the point of view of algebra, these three roots are
indistinguishable (i.e., the field extensions made by ad-
joining «; are all isomorphic).

We want to distinguish between our three extensions
Q(a;) by considering them as subfields of

Q(aq, a2, a3) = Q(or,w)

One way to make such a distinction would be to note
that Q(ay) C R whereas Q(az), Q(as) ¢ R. However, we
would like to obtain this knowledge without relying on
the existence of R or C.

w satisfies the irreducible polynomial

3 _
z 1:x2+x+1:0
r—1
which yields
[Qw): Q) =2

A field extension of degree 3 cannot contain an element
of degree 2, so Vi, w ¢ Q(c;). Thus, we learn that

[Q(a,w) : @] =06
and also that
[Q(o,w) : Qa)] =2
and
[Q(a,w) : Q(w)] =3

Finally, we can also conclude that the Q(«;) must be dis-
tinct fields because w is their ratio, and w is not in any

Q).
We end up with the following picture:

Q(a, w)
A
Q(w) Q) Qa2)

(a Q(as)
2 3

a,

Q
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Note that, although we set out to obtain our results
without relying on the complex numbers, we still required
knowledge of C in order to construct our field extensions.

Example. Let us consider Q(v/2,7)/Q. We know that
Q(v/2) and Q(i) have degree 2 as extensions of Q (their
generators satisfy quadratic polynomials). Thus, we know
that Q(v/2,7)/Q has degree either 2 or 4. Again, this
question reduces to whether the two single-adjunction
fields are equal.

We know any number o € Q(i) can be written o =
a -+ bi with a,b € Q. Thus, we would have Q(v/2) = Q(3)
as field extensions over Q if we had

a2:a2—b2+2abi;2

However, this equation cannot be satisfied; hence, the
fields are distinct, and we have

[@(v2,9): Q] =4

Note that there is a third extension, Q(iv/2). This is
again a quadratic extension (has degree 2) and this is dis-
tinct for the same reason the other two are distinct. We
assert without proof that these are all the intermediate
extensions.

Example. We can replace i with v/3 in the above exam-
ple to yield identical results. Let us now attempt to find
the irreducible polynomial over Q satisfied by

a=vV2+V3

(We know that « is algebraic because it is an element of
a finite extension.) Note first that 1, \/2 are a basis for
Q(v2)/Q, 1,/3 are a basis for Q(v/3)/Q, and hence

1,v2,V3,V6
form a basis for Q(v/2,v/3)/Q.

We will solve this problem using two different ap-
proaches. First, let us write out some of the powers of
a:

=1
alz\/i-l-\/g
o =5+2V6
ot =49 +20V6

Note that 1, a2, a? are linearly dependent, and in partic-
ular, we find that « satisfies

2t — 1022 + 1

We could check irreducibility by checking that « is not
in any of the three intermediate extensions (generated by

V2, V3, and \/6) Alternatively, since 1, o, a? are inde-
pendent, we know that the desired irreducible polynomial
is not quadratic (and we know it cannot be cubic because
our extensions have even degrees).

We could, instead, denote f(z) as the irreducible poly-
nomial over Q satisfied by «, and consider the other roots
of f beyond v/2 + v/3. Note that algebra can’t tell the
difference between v/2 and —\/i; they are both just num-
bers satisfying 2 — 1. A similar statement holds for v/3.
We might guess, then, that the other roots are v/2 — v/3,
—vV2 4+ /3, and —v2 — /3. So we simply try

(2= V2~ V3)(@ — V2 +V3)
(z+V2—V3)(z +V2+V3)
= ((z = v2)? = 3)((x + V2)* - 3)
= (2? —1)* — 822
=z" - 102" +1
Note that this doesn’t tell us that our polynomial is irre-

ducible (but in fact it is).
Consider our picture for Q(\@, \/§)

Q(v2,v3)

Ve

QW2 Q)
X : /

If we consider our field extensions as vector spaces, we
find that Q(v/2,v/3) is a four-space, and the intermediate
extensions are all two-planes; therefore, in a very strong
sense, most elements of Q(\/i, \/3) must be single gener-
ators of that field.

Q

Lecture 4 — 1/30/12

Definition 4.1. Let wus formalize the notion of
constructions with straightedge and compass, which al-
lows us to bridge our algebra with planar geometry. In
making such constructions, we begin with a pair of points
p,q € R2. We then define two basic constructions:

1. Draw the line L, , = Pq.

2. Draw the circle Cp(g) with center at p passing
through q.

Given two lines L1, Lo, we can find their point of intersec-
tion; given a line L and a conic C or two conics C, Co, we
can find their two points of intersection. The intersections
of these lines and conics are called constructible.
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Construction 4.2. Begin with p,q € R?. We construct
the point r € L, ; equidistant to both p and g as follows:

1. Draw the circle Cp(g) through ¢ about p.
2. Draw the circle Cy(p) through p about g.

3. Draw the line L between the two intersection points
of these circles.

4. r is the intersection L N Ly, 4

Construction 4.3. Begin with a line L and a point
p ¢ L. We construct a perpendicular to L through p
as follows:

1. Draw any circle about p intersecting L at two points
q and ¢'.

2. Find the midpoint r between ¢ and ¢’ on L.

3. Draw the line L, ,; this is our desired perpendicu-
lar.

Construction 4.4. Begin with a line L and a point
p € L. We construct a perpendicular to L through p
as follows:

1. Draw any circle C},, around p, intersecting L at ¢
and 7.

2. Draw the circle Cy(r) and the circle C,(q).

3. Connect the intersections of these two circles via a
line L’; this line passes through the midpoint p and
is perpendicular to L.

Construction 4.5. Begin with a line L and a point
p ¢ L. We construct a line parallel to L as follows:

1. Draw the line L' perpendicular to L through p.

2. Draw the line L’ perpendicular to L+ through p;
this is parallel, as desired.

Construction 4.6. Begin with a pair of points p, ¢ and
a line L with a point r € L. We construct a line segment
in L with one endpoint r with length equal to d(p, q) as
follows:

1. Draw the circle Cp(q).
2. Draw the line Ly, ,..

3. Draw the line L’ through p parallel to L; let s be
the point L' N Cy(q).

4. Draw the line L” parallel to L, , through s.

5. Let 7’ be the intersection L” N L; the segment r, 1’
has d(r,r") = d(p, q).

Definition 4.7. Begin with the two points (0,0), (1,0) €
R%. We call a point (a, b) constructible if we can construct
it starting with our two points using our various construc-
tions. Similarly, we say a point a € R is constructible
if (a,0) is constructible. Finally, an angle 6 € [0,2m)
is constructible if we can construct two lines L, L’ with
Z(L,L") = 6. Note that 6 is constructible if sinf and
cos § are constructible.

Let p,q € K? C R? where K is some subfield of R.
Then L, 4 is defined by a linear equation with coefficients
in K. Similarly, the circle Cy(q) is defined by a quadratic
polynomial in K.

If we have two lines L, L’ defined by linear equations
with coefficients in K, their point of intersection L N L’
is in K?. If instead we have a line L and a circle C' de-
fined by equations with coefficients in K, their intersection
points in L N C have coordinates that live in a quadratic
extension of K. To see this, we can parametrize L

L={t,a+p8t):teR} a,feK

and then apply the equation for C to (¢, + 5t) to get
a quadratic polynomial in ¢ alone, with coefficients in K.
This results in the following conclusion:

Proposition 4.8. If a is constructible, then there exists
a tower of fields

QCcKyC---CKp,>a
such that
[Kl'ZKi_l]:2

and hence
[K,:Q]=2"

Moreover, we have, for some r € N,
degga=r

Example. We can use this proposition to conclude that

it is not possible to trisect an arbitrary angle. Take Z;

we can ask whether 6§ = g is constructible. Define

o =2cosf = e™/9 4 7m0
Then we have
013 _ e‘n’i/B +3€7ri/9 +3677ri/9 +€77ri/3
| O ——
3a

and hence
a®—3a—-1=0

Thus, « satisfies a cubic polynomial with no linear factors
and which therefore is irreducible. So

degga =3

which, by our proposition, means that a and 6 are not
constructible.
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Proposition 4.9. Let L C R be the set of constructible
numbers. Then L is a subfield of R.

Proof. Let a,b € L. We know that

1. a+ b € L since we can simply extend a segment of
length a by one of length b.

2. —a € L because if we can construct (a,0), we can
just as easily construct (—a,0).

3. ab € L. To show this, we first construct a triangle
of side length 1 along the z-axis and side length a
vertically. We then construct the similar triangle
with side length b along the z-axis; this will have
side length ab vertically.

4. % € L. We use similar triangles again, this time

beginning with a triangle of side length a and 1 and
scale it down so that the a side has length 1.

and so L is a field. [ |

Proposition 4.10. If a is constructible, then \/a is con-
structible.

Proof. To construct it, we

1. Draw a circle with diameter a + 1 and divide the
diameter L into two segments of lengths a and 1 at
a point p.

2. Draw a line perpendicular to L through p. The
height of this line in the circle is \/a.

Thus, not only is L a field, but it is closed under square
root. ]

Theorem 4.11. a is constructible iff there exists a tower

of fields

QcKyCc---CK,>a

such that
[Kz : Kifl] =2

Theorem 4.12. Let F be a field, f € F[X] irreducible.
Then AK/F such that f has a root in K.

Proof. Simply take F[X]/(f). f is maximal since it is
irreducible, so K is a field. Then Z, the equivalence class
of x mod (f), satisfies polynomial f(z) = 0. [ |

Example. Let F'=Fy = 7Z/(2). The polynomial
flx)=2>4+z+1

is the unique irreducible quadratic polynomial in this
field. Then we can form a field

Fo[X]/(2* + 2 +1) 2 Fy

This is the unique field of four elements. (Note that it is
not Z/4, which is a ring but not a field.)

Lecture 5 — 2/1/12

Definition 5.1. Let F' be a field The polynomial ring

over F' is given by

F[X]={ana" + - +arx+ag:a; € F} C F¥

Note that the polynomial ring does not map injec-
tively to functions on F'; this is pointedly the case where
F is a finite field.

Definition 5.2. Let f = a,x™ +-- -+ ag. The derivative
of f is given by

ff=n-a2" '+ +a

where n is the image of n under the canonical map Z — F.
Example. Let
f=24z=za(—1) €F[X]

Then f’ = 1 because (?)" = 0. Note that any field
of positive characteristic admits nonconstant polynomi-
als whose derivatives are zero.

Theorem 5.3. Let FF — K, f,g € F[X] — K[X].
Then any identity in F[X] holds in F[X] iff it holds in
KI[X]. This includes:

1. 3q¢,r € F[X]: g = fq+ r with degr < deg f when
carried out in F[X] iff g = fq+r in K[X]. Note
that q,r are unique.

2. flg € F[X] < flg € K[X].

3. gedpix)(f, 9) = gedgx) (f5 9)-

4. Let h € F[X]. Then h|f andh|g € F|X] <=
h|f and h|g € K[X].

Claim 5.4. Let FF — K be a field extension, f,g €
F[X]. If f is irreducible over F and f,g have a common
factor in K[X], then f|g € F[X].

Proof. Since f,g € K[X] have a common factor h, then
h is a common factor of f,g € F[X]. But f is irreducible;
thus, we must have f = h, which means f | g, as de-
sired. ]

Lemma 5.5. Let « € F, f € F[X], f(a) =0. Then «
is a multiple root (i.c., (x — a)?| f) iff f'(a) = 0.
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Proof. Suppose first that (r — a)?|f. Then 3g € F[X] :
f = (z — a?)g. Taking derivatives, we have

f'=(x—0a)’y +2(z—a)g

Then clearly, f'(«) = 0.
Now suppose f’(a) = 0. Then 3h € F[X] : f =
(x — a)h, and so f' = (x — a)h’ + h. Then we have

0= f'(e) = (a = a)h' (@) + h(a) = h(a)

This means « is a root of h, which yields (x — «)|h. But
since f = (x — a)h, we have

(z—a)|f
as desired. |

Corollary 5.6. If f € F[X] is irreducible, f' # 0, then
f has no repeated roots in any extension F — K.

Proof. Suppose that f had a repeated root in some ex-
tension K/F. Then in K[X], f, f’ are not relatively prime
(they have a common factor). But then they also have a
common factor in F[X]. Then f|f’, but deg f’ < deg f.
This implies f' = 0, a contradiction. ]

Proposition 5.7. Let F' be a finite field. Then
|F|=#F =p"
for somep e P, r e N.

Proof. Let ¢ : Z — F be the canonical homomor-
phism. We have ker¢o = (p) for some prime p and
ime = Z/(p) = F,. So F is a finite-dimensional vec-
tor space over F,,, which implies #F = p”. |

Theorem 5.8. There exists a unique field of order p”,
which we denote
FPT == ]Fq

Example. Let F' = Fy. There are four polynomials of
degree 2 over Fy. Three of them factor: z2, x(x — 1), and
(r —1)2. The remaining one,

224+z+1

is the unique irreducible polynomial of degree 2 in Fs.
Then
Fo[X])/(2* + 2+ 1) =Fy

is the unique field of four elements because every field of
four elements must be a quadratic extension of Fy and
there is only one irreducible quadratic polynomial in Fs.
Let us write out the multiplication table of Fy, given as

Fy,={0,1,a, a0 + 1}

‘We have
0 1 o a—+1
0 0 0 0 0
1 0 1 a a+1
Q 0 « a+1 1
a+1|0 a+1 1 «

Definition 5.9. Let R be a ring. We define the group of
units of R to be

R*={z: 3 ozl =21z =1}
Note that for a field F', F* = F — {0}.

Observation 5.10. Let F' be a field of order ¢ = p".
Then F* is a finite abelian group of order ¢ — 1. So
VYa € F, a # 0, we have a9~ = 1, and hence every such
a is a root of the polynomial

27t -1

Multiplying by x, we get that every element of F' is a root
of the polynomial

29—z

Since |F| = ¢ and deg(z? — x) = g, there are no repeated
roots; thus,

a2l —z = H(:U—a)

acF

Lemma 5.11. Let K be any field, G C K* a finite sub-
group of K*. Then G is cyclic.

Proof. First, consider any a,b € G of orders a and j3 re-
spectively. If ged(a, 8) = 1, then ord(ab) = af. Suppose
that G is not cyclic. Then by the above (and since G is
a finite abelian group),

n:=lem{ord(a) : « € G} < |G|

(Actually, the lem properly divides |G|, but the strict
inequality is all we need.) But this means that the poly-
nomial "™ — 1 has |G| > n roots. However, a polynomial
cannot have more roots than its degree, and hence, G
must be cyclic. |

Example. Note that the last deduction in the above
proof requires that K be a field. For instance, we have

(Z/8)* = {1,3,5,7} =~ 7,2 x Z)2

But 22 — 1 has four roots in Z/8.
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Proof (of Theorem). First, we will show that IK/F, a
field extension of order p” for any r € N. Let L/F, be
any extension in which the polynomial f = x? — z factors
completely. Note that f’ = gx9~! — 1 which is —1 for
xz =0and g —1 for z # 0. Since f'(a) # 0 for every
a € L, it has ¢ distinct roots. We claim that

K:={a€cLl: fla)=a’—a=0}— L

is a subfield (where by the above, we have #K = q).

If a,b € K, then a? = a and b7 = b, so (ab)? = ab, and
hence ab € K. Moreover, we have (a + b)? = a? + b7 =
a+b,soa+be K. So K is indeed a field, as desired.

Now we want to show that K is unique. Suppose we
have two extensions K, K’ with #K = #K' = p" = q.
We claim that K = K'.

We know that K* is cyclic; let a € K be a generator
of K*. So

K ={0,1,a,0?,...,a77%}

In particular, we have K = Fp(a). Now let f be the irre-
ducible polynomial satisfied by a/F,. By definition, we
have

flz?—2x e K

But then f|z? — z € F),, and hence also f|z? —z € K'.
Since 29—z factors completely in K', f factors completely
in K’, so f has a root o/ € K'. Then K’ = F,(¢’), and
hence

K =F,[X]/() = K’

as desired. |

Lecture 6 — 2/3/12

Before we proceed, we recall some general facts about
finite fields.

o Ffinte=dpecPreN:#F=p" =q.
o HF=q=—=Vre Fz?—x=0.

e F finite = F'* cyclic.

o JIF:#F =17p".

Proposition 6.1. ;- has a subfield isomorphic to Fx
iff k|r.

Proof. First, let F,» be a subfield. Then Fy- is a m-
dimensional vector space over IF,x. Hence,

pT _ #Fpr — (pk)m _ pkm

and thus k|r.
Now suppose instead that k|r. Then Im : p" = (p
So we have

(@ )| (2" —2)

Then zP* — z factors completely in IF)- since xP" —z does.
Take .
{x €Fpr i 2P —2 =0} CFpr

This is a subfield of order p*. |

Proposition 6.2. The irreducible factors of 9 — x/F,
are exactly the irreducible polynomials over IF, whose de-
gree k divides r.

Proof. Let f € F,[X] be irreducible of degree k|r. f fac-
tors completely in Fr D F,» = Fp[X]/(f), which means
it has a common root with ¢ — x. But since f is irre-
ducible over I, this means that

flz? -z €T,

Now let f € F,[X] be irreducible and f|z9 — z € F,,.
We know that f factors completely in F,~. Choose a a
root of f in Fj-. We have

F, — Fy(a) — Fpr
and so deg f = k|r, as desired. |

Example. Let us consider the finite fields of characteris-
tic 2. We have Fy = Fa(«), where « is a root of 22 +z+1,
the unique irreducible quadratic polynomial over Fy. We
can factor

ot —r=a(z+ 1) (2 +x+1)

We also have Fy —— Fg. What are the cubic polyno-
mials over 3?7 We have four which factor 1,1, 1

23 2%z +1) z(z+1)?2 (z+1)3
two which factor 1,2
r(2?+z+1) (z+1)@@*+z+1)
and two which do not factor
2 4r+1 42?1
We can write
B —r=z@+ D)@ +r+ 1) (2> +2%4+1)

Consider also Fy —— Fi16. Of the quartic polynomi-
als in Fo, 5 factor into linear factors, 1 factors into two
quadratics, 4 factor into one linear and one cubic factor, 3
factor into a quadratic factor and two linear factors, and
three are irreducible. We can factor

2 —r=a@+ D) e+ D@ 4+ D) (2t +23 4+ 1)
(z* + 23 2%+ +1)

Definition 6.3. A polynomial f € F[X] is said to split
completely in an extension K/F if f factors into linear

factors in K[X].
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Theorem 6.4 (Primitive Element Theorem). Let F be a
field, char(F) =0, and F — K a finite extension. Then
Jda € K: K = F(a). «a is called a primitive element for
K/F (it generates the entire extension).

Note that this theorem also holds for all finite fields
F of arbitrary characteristic.

Proof. We know K = F(aq,...,ax) for some elements
ai,...,ar € K. By induction on k, we can assume that
F — F(ai,...,a5_1) has a primitive element 5. But
then our problem reduces to the base case, of showing
that

F— F(B,a;) = F(ay,...,ax)

has a primitive element. So, we will try to show that if
K = F(w, (), then K = F(y) for some v € K. In partic-
ular, we claim that for all but finitely many ¢ € K, 5+ c«
is primitive.

Let f,g be the irreducible polynomials satisfied by «
and f3, respectively, over F. Let K'/K be an extension
in which f and g split completely. Let o := aq,...,
be the roots of f; 8= f1,...,Bn, the roots of g. Let

v=p+ca

Now let L = F(vy). We claim that o € L; it will im-
mediately follow that 8 = v — ca € L, and hence L = K.
Define a polynomial h € L[X] by

h(z) = g(v — cx)
We know that the roots of g are f3;; thus, the roots of h
are given by

v—Bi _ BB

c Cc

xr = —+ «

We want to choose ¢ so that ged(f,h) =  — a; this
will imply that a € L, as desired. But we can compute
this ged in K'[X] instead But f splits completely over K';
this means it suffices to show that none of the a; (except
for «) is a root of h. This is the case whenever

B — B

a; —«

c#

which completes the proof. |

Lecture 7 — 2/6/12

Definition 7.1. Let FF —— K be a field extension. The
elements aq,...,a, € K are algebraically independent if
they do not satisfy any f € F[Xy,...,X,] (i-e., if there
is no f such that f(ai,...,ay,) = 0). Alternatively, we
have a tower of extensions

Ff—)F(a1)<—>F(oz1,a2)‘—>-~-<—>F(a1,...,an)

where each extension is transcendental.

Definition 7.2. ai,...,a, € K are a transcendence
base for K/F if they are algebraically independent and
Flag,...,ap) — K

is an algebraic extension. That is, a1, ..., a, are a max-
imal collection of algebraically independent elements.

We will for the duration of this lecture assume that
any transcendence basis is finite.

Theorem 7.3. Let ay,...,a, € K be a mazimal tran-
scendence basis and By, ..., B, € K be algebraically inde-
pendent. Then n < m.

The proof of this theorem involves repeatedly replac-
ing the a; with the 3; in the transcendence basis; how-
ever, it is omitted.

Corollary 7.4. Any two transcendence bases have the
same cardinality.

Definition 7.5. The transcendence degree of K/F is de-
fined as the cardinality of any transcendence basis for
K/F.

Definition 7.6. Let FF —— K be a field extension.
We say that K/F is purely transcendental if K =
F(aq,...,ap,) for algebraically independent oy, ..., ay,.

Note that all transcendental extensions can be decom-
posed as

alg.

F<p'—t'>F(a1,...,an)‘—>K

Theorem 7.7 (Luroth). Any transcendental subfield of
C(t) is purely transcendental.

Theorem 7.8 (Catelnuovo-Enriquez). If K C C(t,s) has
transcendental degree 2, then K is purely transcendental.

Theorem 7.9 (Clemens-Griffiths). The above does not
hold for 3; that is, 3K C C(t,s,u) with transcendental
degree 3 that is unpure.
Example. The field

K =C(2)[y)/(y* —2* - 1)
is purely transcendental over C; however,

L=C(z)[y)/(y* -2 - 1)

is not pure.
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One important context of this discussion is that of in-
tegrating functions. If f(x) € C(x) (the field of rational
functions over C), then

/f(x) dz

can be calculated using partial fractions.
Meanwhile,

/ dz / dx
VaZ+1 c Y
where C is the curve y?> = 22 + 1. We can parametrize
C: “every” line through C meets C exactly once, so we

parametrize by the slope ¢ through the point (0,1). Solv-
ing for the parametrization gives

2t 142
1—¢271—1¢2
dz 2
—= | —d&

/y /1—152

This works because our parametrization exists, which
is the same as saying

Cla)lyl/(y* —2* = 1) = C(1)

2t 1+¢2
where z — =7 and y — 1755.

How, then, do we solve

so we integrate

/ dx
Va3 +1
This integral spurred huge mathematical progress. A key

fact in this problem is that L is not purely transcendental.
Consider surfaces in C x C.

Z=A{(z,y) y* =2*+1}

W= {(z,y):y° =2+ 1}

Z is a sphere with punctures; integration along a path is
path-independent. W is a torus with punctures; integra-
tion is path-dependent.

Lecture 8 — 2/8/12

Definition 8.1. Let R be any commutative ring with
unit. We say that f € R[Xy,...,X,] is symmetric if it is
invariant under the action of S,, on R[X7,...,X,]; that
is, if

f(xl,... Vo € S,

) xa(n))a

727”) = f(IO'(l)v"'

polynomial over zq, - - -

Note that we do not mean to say that the values of
the polynomials are equal; for example, for R = F,,
o —ay #ab — o
Rather, we want to say that the polynomials themselves

are equivalent.

Example. Start with any monomial. Then the sum of
the elements of its orbit under the action of S, (which
we refer to as the orbit sum) is symmetric. For instance,
starting with =%, we have

This particular sum is called the power sum. If we start
with, say, 12, we instead get

S o,
i<j
Starting with z122 yields
S e
i#]
Definition 8.2. We define the ith elementary symmetric
, Tn, Written

S; = Si(l‘l,...,l‘n)

as the orbit sum of x1 - - - x;.

The elementary symmetric polynomials (as polynomi-
als in ug,...,u,) are the coefficients, as a polynomial in
x, of

n

pla) =] —w)
i=1
=2 — 512" Fsa"E— ks,

Theorem 8.3. Let R be a ring. Any symmetric poly-
nomial g € Rlu,...,u,] is expressible as a polynomial
of the elementary symmetric polynomials S1,...,S, in
UpyeooyUp.
Example. We can write the second power sum

2 2
]+t

in terms of elementary symmetric polynomials as

2
n
E T; —25 T;T;
i=1

i<j
=57 — 259

+
8
3
I

Similarly, we can write

n
E .Z‘il‘?: E i3
=1

i

g iy | —3 E TiT;Th

1<j i<j<k

= 8182 — 333
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Proof. Say g(uy,...,u,) is symmetric. Let us define

go(u1, ... up—1) =g(u1,...,upn_1,0)

This is symmetric in the variables ui,...,u,—1. Induct-

ing on n, we can write go as

. 7un71) = Q(S

a polynomial in the elementary symmetric polynomials

0

go(ul,.. Toeee

over Up,...,Up—1.
Now we claim that we can write
gur, ... un) = Q(81,. -+, 8n—1) + 8n - h(u1, ..., up)

where h is symmetric of degree = deg g—n. The difference

glur, ... un)—Q(s1,...,8,—1) = 0 whenever u, = 0. So,
Up |g(Ur,y ... un) —Q(S1,...,5p—1). But then by symme-
try,

Uj |g(ula v 7un) - Q(sh e ’Sn—l)
and hence,

Snlg(ur, ... un) — Q(81,. ..y Sn—1)

Then h is the quotient of this division, and it must be
symmetric since everything else in the equation is sym-
metric. Then by inducting on the degree of g with n fixed,
we are done. [ ]

Remark. Let R = Z. Note that the power sums
{ah + - ai}

generate the ring of .S,,-invariant polynomials in the vari-
ables x1,...,x, over QQ, but not over Z as the elementary
polynomials do.

Observation 8.4. Let F' —— K be a field extension. Let
f € F[X], and say that f splits completely in K, with

roots a,...,ay,. Since we can write
n
fa) =] - a)
i=1
_.n n—1 n—2
=" — s1x + sox =17
we have

si =si(a,...,ap) € F

Then if p(u,...,u,) is any symmetric polynomial, we
have p(aq,...,ap) € F.

Definition 8.5. Define p € F[X] by

27

p(z) =" — s12" 1+ g9z -t s,

= H(fﬁ — u;)

.., Up). We want to define a function

T —u))

i#]
D is invariant under S,,, so we can write

D:A(Sl,...

s sn)
The polynomial A is called the discriminant of p.

Note that A is well-defined whether or not p actually
factors in its home field. Also, note that A evaluates to
zero iff p has multiple roots in some extension.

Example. Let

p(z) =2 —s1x+ 89 = (x—a)(z—8)

where s1 = a+ 8 and sy = aff. We have

A= (a-p)?
=a®—2ap
=57 — 459

which is the well-known discriminant for monic quadratic
polynomials.
Now consider

3 31x2 + Sox — S3

p(z) =z
which has a much more complicated discriminant (which
we will give without computation),

A = —453s3 4 5752 + 18515953 — 455 — 2752

(In this formula, we have actually taken s; = |s;|.) Note

that if s; = 0, this reduces to
A = —4s3 — 2753

We can arrive at this version by substituting = — x —
for general cubics.

s1
3

Definition 8.6. The Vandermonde matrix is given by

1 1 1
T x2 x
V= 2 2 g
] ) Th ) x;,
n— n— n—1
Ly ) T

11
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Observation 8.7. Note that the determinant vanishes
whenever x; = x; for some i # j. It is given by

detV = ﬂ:H(l‘L — xj)

i<j

which is a polynomial of degree (Z) This polynomial is
invariant under the alternating group, but not the sym-
metric group. We could make it invariant my squaring,
but let us examine an alternate route.

Consider the matrix

1 1 1

T X T
! 1 2 n
Vi= 2 2 2
Ty T3 Ty
n n n
Ty T T

Note that det V = 0 and det V' = 0 iff 2; = x; for some
i#j,s0detV]detV'. Va; < --- < ay, the polynomial
det(z;7)
det(z?)

will be symmetric. The collection of such polynomials
form an additive basis of the symmetric polynomials.

Lecture 9 — 2/10/12

Definition 9.1. Let FF «—— K be a field extension,
f € F[X]. We say that K is a splitting field for f/F
if

1. f splits completely in K as

n

H(w— a;),

i=1

f(z) oa; € K

2. K is the minimal extension in which f splits com-
pletely; that is,

K =F(ay,...,ap)

Proposition 9.2. Every f € F[X] has a splitting field.

Proof. We know that f splits completely in some ex-
tension L/F. Then take the roots ai,...,a, of f; the
extension

F"—)F(Oq,...,()én)

is a splitting field.
We can also determine the splitting field algorithmi-
cally. Choose an irreducible factor fy of f. Let

K1 = F[X]/(fo)

Then Ja € K5 @ f(a) = 0. We replace f by f/(z — «)
and repeat this process as necessary. |

12

Proposition 9.3.

1. Let K/F be a splitting field for f € F[X].
[K : F] < 0.

Then

2. Let F — K —— L be a tower of field extensions.
If L is a splitting field over F, then L is a splitting

field over K.
3. Let F — L be a field extension, f € F[X]|. Then
L contains at most one splitting field for f/F.
Proof. All immediate. ]

Theorem 9.4. Let F — K be a field extension. Sup-
pose that K is a splitting field over F. Then Vg € F[X]
wrreducible over F', if g has a root in K, then g splits
completely in K.

Proof. Say K/F is a splitting field for f € F[X]. We
can factor f as

n

H(x—ai)

i=1

Take g € F[X] irreducible such that 35 € K : g(8) = 0.
Since

f(z)

K=F(a,...,an)
we can write
B=plal,...,a,)
for some p € F[Xq,...,X,].
Let {p1,...,pr} be the orbit of p under the action of
Spoon F[Xy,...,X,], with p; = p. Set

Bi = pi(ala MR O5'IL)
and define a polynomial

k

h(z) =[](z - B:) € K[X]

i=1
We claim that h € F[X]. We can write

2

h(z) =a" —s12" ' 4 502" 2 — - £ 5,
where the
siZSi(ﬁlw"aﬁk)
=si(p1(at,...,an), ..y prlar, ..., an))

Since the s; are symmetric on the fy,...
are symmetric on the aq, ..., ay, s; is symmetric with re-
spect to S, on aq,...,a,. Hence, we can express h as a
polynomial in the elementary symmetric polynomials over
ai,...,Qn, and thus in the coefficients of f. But these
coefficients are in F', and we have h € F[X] as desired.
If g irreducible in F' but has root in common with h
in K, g|h € K[X]. But then g|h € F[X]. Since h splits
completely in K, so does g. |

, Br and the p;
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Example. Any quadratic extension is a splitting field
K F(a) where « satisfies a quadratic polynomial
f 22 + ax + b, and its inclusion in K enables f to
split completely.

Example. Let o = ¢/2 and w = €2™/3 set oy = a'w, and
recall our observations about field extensions concerning
these values.

K =Q[X]/(z* -2) 2 Q(y) cRCC

This is not a splitting field over Q, since x> — 2 only has
one root in K, as we have previously shown. If, however,
we include other roots in the extension, then we can make
K into a splitting field.

Note that we do need to check that K does not con-
tain other roots; for instance, if w € K, since w satisfies
% = 2242 +1, then that polynomial would split com-
pletely in K. Fortunately, we have also shown previously
that w ¢ K.

Theorem 9.5. Let F be a field of characteristic zero.
Then any two splitting fields of f € F[X] are isomorphic.

Proof. Say K, K> any two splitting fields for f/F. By
the primitive element theorem, we have K; = F(v) for
some 7 € K;. Let g € F[X] be irreducible polynomial
satisfied by v/F Extend Ks by a field L such that g has
a root 7/, and let K’ = F(y') C L. Then

F[X]/(9)

via an F-isomorphism sending v + 7’. Since K; is a
splitting field of f, so then is K’. But then K', Ky C L
are both splitting fields for f/F, and hence K' = K,
because L can contain at most one splitting field. ]

K K’

>~ o~

Lecture 10 — 2/13/12

We shall assume from this point onward that all fields in
question have characteristic zero.

Definition 10.1. Recall that we call two field exten-
sions K/F and K'/F isomorphic, or more specifically
F-isomorphic

K/F2K'|F

if dp : K — K’ such that we have the diagram

K2 K

I

F——=F

An F-isomorphism from K/F to itself is called an
F-automorphism. These are the symmetries of the field

extension K.

Lemma 10.2. Let F' — K and F — K’ be field ex-
tensions. Then we have the following

1. Let f € FIX], ¢ : K — K' an F-isomorphism. If
a € K is a root of f, then so is p(a) € K.

Suppose that K = F(aq,...,ap). Let p,¢ 1 K —
K' be F-isomorphisms. If Vi, p(a;) = ¢'(ay), then
o=y

Let f € F[X] be irreducible, with a root a € K

and o € K' in each extension. Then Iy : F(a) —
F(a') an F-isomorphism sending o — o.

Proof. Omitted.

[ ]
Definition 10.3. Let I' —— K be a field extension. The

Galois group of the extension K/F is defined as

Gal(K/F) = Aut(K/F)
the group of F-automorphisms of K.

Definition 10.4. A field extension F' —— K is called a
Galois extension if

13

|Gal(K/F)| = [K : F]

Definition 10.5. Let K be a field, H a group of au-
tomorphisms of K. The fixed field of H is the set of
elements of K that are fixed by every element of H,

K ={acK:o(a)=a,Yoc H}
Note that K¥ C K is a subfield.

Theorem 10.6. Let K be a field, H a finite group of
automorphisms on K. Let F = K. Let 1 € K,
{B1,...,Br} its H-orbit. Then the irreducible polynomial

of B1/F is
g(x) = (z =) (z = Br)
It follows that B is algebraic over F with
degp b1 =1
and that degp f1||H|.

Proof. We want to show that g as defined is irreducible.
We can write

9(x) = (x = pr) - (x = Br)
=2 —ba" - £D,
Each b; is a symmetric polynomial in the §;. Since H
permutes the j3;, it fixes each b;, so b; € KH,

Now let h € F[X] with 5, as a root. For each
i=1,...,r, we can find o; € H with ¢;(81) = §;. Since
the o; are F-automorphisms, then o;(31) = §; must also
be roots of h. Then g|h € K[X], which means

glh € F[X]

It follows that g must be irreducible as desired.
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Observation 10.7. Let F —— K be algebraic but infi-
nite. Then we can construct an infinite tower of fields

F<Ph<kh< --<K

To do so, start by taking a; € K — F and F} = F(a1).
Since oy is algebraic over F, [F} : F| < o0, so F} < K.
We can then take ap € K — Fy and Fy = Fi(ag). Simi-
larly, [Fy : F1] < 0o, so Fy < K. Continuing in this way,
we get our desired tower.

Theorem 10.8 (Fixed Field Theorem). Let K be a field,
H a finite group of automorphisms on K, F = K its
fixed field. Then

(K : F) = |H]|

Proof. Let n = |H|. We know that K/F is algebraic and
degp B|n for every 8 € K. This tells us that

[K:F] <o

By the primitive element theorem, 3y € K : K = F(y).
Since v generates K, if 0 € H fixes 7, we would have
o =id. So the stabilizer of v is {1} C H, and hence its
orbit H~ has order

[Hy| =n

Then degy v = n, which means
[K:F]l=n
as desired. |

Definition 10.9. Let F' —— K be a field extension. An
intermediate field L is a field

FCLCK

We say an intermediate field is proper if L # F and
L#K.

Note that every L-automorphism of K is also an F-
automorphism of K, and hence

Gal(K/L) C Gal(K/F)

Lemma 10.10. Let F —— K be a finite field extension,
G = Gal(K/F). Then

GI|[K : F]

Proof. By the fixed field theorem, we know that |G| =
[K : K€]. Since F-automorphisms are the identity on F,
F C K€, and hence we have the tower of extensions

Fes K¢ K

Then
|G| = [K : KY|[K : F]

as desired.

14

Proposition 10.11. Let K be a field, H a finite group
of automorphisms on K. Then KH «— K is Galois and
H = Gal(K/KT).

Proof. By definition, H C Gal(K/K*). By the above
lemma, we know |G(K/KH)||[K : K¥], and the fixed
field theorem gives |H| = [K : K*]. Then G(K/K) C
H, and we have equality as desired. |

Observation 10.12. Let FF — K be a finite exten-
sion with primitive element v, € K. Let f € F[X]
be the irreducible polynomial satisfied by v, with roots
VsV € K.

We know that there is a unique F-isomorphism o; :
F(v1) = F(v;) with 71 +— ;. Since K = F(71), it follows
that K = F(v;) for each i, so o; is an F-automorphism
of K. Since every F-automorphism must take v; — ;
(since ~y; are all the roots of f in K'), we have

Gal(K/F) = {o;}
with | Gal(K/F)| =r.

Theorem 10.13. Let F —— K be a finite field extension
with G = Gal(K/F). The following are equivalent

1. K/F is a Galois extension (i.e., |G| = [K : F])
2. F=K¢
3. K 1is a splitting field over F

We use the second condition to show that an element
a € K is actually also in F'; we use the third condition to
determine that an extension is Galois.

Proof. Showing that 1 <= 2 is quick. The fixed field
theorem gives us |G| = [K : K¢]. Since F — K¢ «—
K,
|G| =[K: F] «—= F=K¢

Now we will show that 1 <= 3. By the primi-
tive element theorem, we can choose v; € K such that
K = F(v1). Let f € F[X] be the irreducible polynomial
satisfied by ;. We know that

(K : F] = degpy1 = deg f

Let v1,...,7 € K be the roots of f in K. Then we have
|G| = r by our previous observation.

If r = |G| = [K : F], then since deg f = [K : F],
f splits completely in K and hence K F(v)
F(v1,...,7v) is a splitting field. Conversely, if K is a
splitting field, the same reasoning applied in reverse yields
|G| =r=[K:F] [ |

Corollary 10.14.

1. Ewvery finite extension K/F is contained in a Galois
extension.
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2. If K/F is Galois, L an intermediate field, then K/L
is also Galois, and

Gal(K/L) C Gal(K/F)

Observation 10.15. Let F' — K be a Galois extension
with G = Gal(K/F). Let g € F[X] split completely in K
with roots fi,...,5,. Then

1. G acts on the roots {3;} by permuting them.

2. If K is a splitting field of g/F, we claim that
the action of G is faithful Bl We know that K =
F(B1,...,0:), and we get faithfulness from the fact
that o € G is determined entirely by its mapping of
the generators i, ..., 3. It follows that G —— S,..

3. If g is irreducible over F', the action of G is transi-
tiveE| Since g is irreducible, we know that g must
be the irreducible polynomial satisfied by ;. Since
F = K%, then {;} = Gj31, which is the statement
of transitivity.

It follows that if K is a splitting field of g/F and g is
irreducible in F', then G — S,. embeds transitively.

We will now state and prove the fundamental theorem
of Galois theory, which provides for a bijective correspon-
dence between intermediate fields and subgroups of the
Galois group. Having build up significant machinery con-
cerning Galois extensions, this proof will be trivial.

Theorem 10.16 (Fundamental Theorem of Galois The-
ory). Let ' —— K be a Galois extension, G =
Gal(K/F). Then there is a bijective correspondence be-
tween

{H-H<G}+—{L:F—L-— K}
In one direction, the bijection maps
H+—— K
and in the inverse direction, it takes
L+— Gal(K/L)
Proof. Let H < G and L = K. By the fixed field
theorem, H = Gal(K/L). Now suppose that L is an

intermediate field, H = Gal(K/L). Then since K/F is
Galois, so is K/L, and equivalently, L = K. |

Observation 10.17. Note that if L and L’ are interme-
diate fields and H and H’ are their corresponding sub-
groups, L C L' iff H D H'. In particular, F' corresponds
to Gal(K/F) and K corresponds to {1}.

If we have L corresponding to H, the since K/L is
Galois and H = Gal(K/L), we have

K : L) = |]

We also know that |G| = [K : F] = [K : L|[L : F] and
|G| = |H||G : H], so we also have

[L:F)=|G: H]

Corollary 10.18. A finite field extension F' —— K has
finitely many intermediate fields.

Lecture 11 — 2/15/12

Example. Let F = Q. Take o = v/3, 8 = /5 and let
K = F(a, ). K is the splitting field of

(? = 3)(z* = 5)
and hence is a Galois extension. We have
|Gal(K/F)|=[K : F] =4

and hence Gal(K/F') is either Cy the cyclic group or V' the
Klein four group. We know that F(«), F(53), and F(af)
are three distinct intermediate fields of K/F, and hence
correspond to proper subgroups of Gal(K/F). Since
[K : L] = 2 for each of these intermediate subgroups L,
they correspond to subgroups of order 2. However, Cy has
only one element of order 2, and hence Gal(K/F) =V,
which has three elements (and hence three subgroups) of
order 2.

These are the only proper subgroups of Gal(K/F),
which means that F(«), F(5), and F(af) are the only
proper intermediate fields.

Note that given
Fe—L-—K

where K/ F is Galois, we are only guaranteed that K /L is
Galois, but not that L/F is. To determine whether L/F
is Galois, we have the following;:

Theorem 11.1. Let F —— K be a Galois extension with
G = Gal(K/F). Let L be the fized field K for a sub-
group H < G. Then L/F is Galois iff H < GE| If so,
then

Gal(L/F) = G/H

2A group action on X is faithful if Vg € G, 3z € X : gx # x; in other words, if g fixes X, g = e.
3A group action on X is transitive if Gz = X for any € X; in other words, if X has a single orbit under G.
4A subgroup N < G is normal if Yn € N, Vg € G, gng—! € N. In other words, a normal subgroup is a subgroup that is invariant

under conjugation.

15



Math 123—Algebra 11

Max Wang

Proof. Let ¢, € L be a primitive element for L/F,
g € F[X] the irreducible polynomial for e;. Since K
is a splitting field, e; € K, g splits completely with roots
€1,...,€6-. Note that L/F is Galois iff L is a splitting
field, which is the case iff

vie{l,...,r},e, € L

We will show that this holds iff H < G.
Since G is transitive on {ej,..., €.}, we know that
Vie{l,...,r},

do; € G : Ui(el) =€;

Fix i and consider o;. We have F(¢;) = L iff ¢; € L (since
degpe; = degpe;). This is the case iff the stabilizer of
€; is H. Meanwhile, the stabilizer of o(e;) is the conju-
gate group cHo~!. The condition that H = cHo ™! is
exactly the condition that H < G, which is our desired
conclusion.

Suppose that L/F is Galois. Then ¢; € L for each .
An F-automorphism o € G takes €1 — ¢; for some 7, and
hence maps

O'ZF(El):L—>L:F(6i)

The restriction oz, is hence an F-automorphism of L.
This restriction operation induces a group homomor-
phism
p:G— Gal(L/F)

We have

kero={ce€eG:o|lp=id} =H
We also have that

G/H| = [G: H] = | Gal(L/F)|

which means im ¢ = Gal(L/F'), and by the First Isomor-
phism Theorem,

G/H = Gal(L/F)
as desired. [}

Let us now apply the machinery of Galois theory to
the study of cubic polynomials over a field F. Consider

f(x) = 2® —a12® + asx — a3

=(z—o)(z—a2)(z — a3)

where «; € K are the roots of f in the splitting field K
of f over F.

Note that a1 = a1 + as + ag € F. Hence, a7 and as
generate ag, and we have the tower of extensions

F— F(ag) — F(aq,a2) = Flag,ag,a3) = K
Let L = F(ay). Since f/F is irreducible,
[L:F]=3
and we can factor

f(x) = (z — a1)q(x)

where ¢ is the quadratic polynomial with roots as, as.
Either ¢ is irreducible over L or it is not; if it is, then

[K:L]=2 [K:F]=6

Otherwise,

L=K [K:F]=3

Example. Let F = Q, f(x) = 2 + 3z + 1, which is irre-
ducible over Q. The derivative f'(z) = 322 + 3 is strictly
greater than zero, so f is strictly increasing and hence has
only one real zero o;. aj cannot generate the complex
roots of f, so [K : F] = 6 where K is the splitting field
of f.

Example. Let F = Q, f(z) = 2% — 3z + 1, also irre-
ducible over Q. If a; is a root, then a? — 2 is another
root. We can generate the third root as given above, and
hence in this case, [K : F] = 3.

By its action on the roots of the cubic f, the Ga-
lois group G = Gal(K/F) is a transitive subgroup of Ss.
There are two such groups: Ss itself, and the alternating
(and cyclic) group As. If [K : F] = 3, then G = Ajs; if
[K : F] =6, then G = S5. The key distinction is whether
or not ¢ is irreducible over L.

To decide this, we will use the value

0= (Ozl — 042)(041 — Oé3)(0é2 — 043) e K

which is the square root of the discriminant D of f E| Note
that & # 0 since the roots are distinct (we assume F' has
characteristic zero).

Theorem 11.2. Let F' be a field, f € F[X] an irreducible
cubic polynomial, K the splitting field of f over F, and
G = Gal(K/F). Let D be the discriminant of f; then

1. If6=vDEF, then [K : F] =3 and G = As.
2. If6=VD¢F, then [K:F| =6 and G = Ss.

Proof. Permuting the roots of f multiplies § by the sign
of the permutation. If § € F', it is fixed by G. Then every
o € G must be even, meaning G = Az and [K : F] = 3.
Otherwise, G = S3 and [K : F] = 6. |

5This is slight abuse of terminology, where we previously defined the discriminant as a polynomial in the elementary symmetric

polynomials.

16
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The alternating group As has no proper subgroups (it e (4: rotations of the square. |C4| = 4. Sy has three
is the cyclic group of order 3). Hence, if G = Az, there conjugate subgroups isomorphic to Cy.

are no intermediate fields, and our lattice is simpl . .
P o Dy: reflections of the square. |Da| = 4. Dy <15y is

K = Flay, as, a3) normal.
Example. Q(y/a,v/b) is a quartic extension as long as
3 Vb ¢ Q(y/a). Tts Galois group must be Ds; it is given by

r the automorphisms

This must be the case since [K : F| = 3 is prime. If in-
stead we have G = S3, we have four proper subgroups to
consider, namely (y), (zy), (x2y), all of order 2, and (x)
of order 3. Our lattice of fields is then

Varry/a
Vb Vb

Va —/a
Vb= Vb

K = F(o1, a9, a3) Vara
3
Varr —a
Vb —Vb
3 3 3 F(0) . -
/ We can also view K = Q(v/a, Vb) as the splitting field of
F 2 a quartic polynomial. Choose any element of K not in
one of the subfields, such as o = /a + v/b. Take its orbit

The corresponding lattice of Galois groups is (Va+ VoG — b —a+ Vb —Ja - \[b}

{1} The irreducible polynomial of « over Q is the product of
the monomials with these elements as roots.

Flen

Consider now the dihedral group Dy. It has three

(y) (zy) (z%y) normal subgroups of order 4:
/ (r) = A3 e D, acts on the set of two diagonals of a square.
/ Let Hp = Zo X Zs be the subgroup preserving the
G=353 diagonals.

e D4 acts on the set of two edge symmetries of a

Lecture 12 — 2/17/16 square. Let Hy = Zo X Zs be the subgroup pre-
serving opposite edges.

We now turn to the study of quartic polynomials. Let

F be any field, f € F[X] an irreducible quartic polyno-

mial. Let K/F be the splitting extension of f over F,

G = Gal(K/F). In K, we can write Meanwhile, it has only one subgroup of order 2:

e Let Ho = Z4 be the subgroup preserving orienta-
tion.

F(2) = (2 — an) (@ — a9) (@ — ag) (& — ) e The group {1, —1}, representing rotation by 180°.
Example. Consider the following tower of field exten-

Then G acts faithfully on the roots {a;}, and we have gjons:

G — Sy transitively.

We can enumerate the transitive subgroups of Sy: Q(vV4+ \/5)
e S;: symmetries of the tetrahedron. |S4| = 24.

e Ay: rotations of the tetrahedron. |A4| = 12. A4<154 Q(
is normal.

o5

e Dj4: symmetries of the square. |D4| = 8. S; has
three conjugate subgroups isomorphic to Dy.

17
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Note that Q (V4 ++/5)/Q is not Galois; we can permute

Q(V4 ++/5) to Q(vV4 —/5). Let

=\V4+V5s o =\4-V5

Take K = Q(a, ’). We have a quartic irreducible poly-
nomial given by

flx)=(r—a)(z+a)(z—a)(z+d)
=a2*—8z2+11

Now consider the following square, with the vertices la-
beled by the roots o, £a’:

(6% O[/

—a — —«

The subgroup Hp comprises the following automor-

phisms:

a— o

o — o
a— —«
o — o
e

o — —a
o —«
o — —a

2

« is invariant under this group but not under all of Dy;
hence, it must generate a nontrivial subfield

Qv5) = K™

Note that this specific correspondence is dependent on
the labeling of our square. The subgroup H4 comprises
the following automorphisms:

a—a
o = o

/
a—
o — o

A
a— —a
o — —a

ot— —«

—N— ——

o — —ao

aq’ is invariant under this group but not under all of Dy;
hence, it must generate a nontrivial subfield

QVIT) = K

Finally, consider the fixed field of the subgroup Hp pre-
serving orientation, for which we have

Q(V55) = K'o

We also have the fixed field of the only normal subgroup
of order 2,

T=HpNHyu
which has corresponding intermediate field
Q(v5,V11) =

We get the lattice

K =Q(a,a)
A
Q(e) Q(v5,v11

which can also be written

//\
\//

KHp

N

and with corresponding Galois group lattice

18
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Note that Q(«) and Q(&) do not correspond to normal
subgroups of Dy; they are not Galois over Q.

Example. We can find a field extension with Galois
group Cy4 by a similar construction to the above. Let

a=1\/2+v2 o =4\2-V2

Then o’ = /2 € Q(a). Hence, Q(a) = Q(c), and our
Galois group will be Cjy.

Recall our initial setup for general quartic polynomi-
als. G must be one of the transitive subgroups of Sy; we
can ask whether GG is contained in each of them. Let

D =]](ai —ay)
i<j
with square root
5 =[[(ei —ay)
1<j
As with cubic polynomials, permutation of roots on 4

multiplies § by the sign of the permutation, so ¢ is invari-
ant under even permutations. Hence,

GCAy < VDeF

Note that only Ds, A4 C A4 in Sy.
Since A4 <154, then we also have A, NG < G.

F — K406 = F(V/D)
Indeed, if v/D ¢ F, we have the tower

19

The fixed field KP2"¢ is splitting field of a cubic, called
the resolvent cubic. To construct this field, we want to
find an element of K that is invariant under Dy but no
larger subgroup of G. Take

B1 = arae + azoy B2 = a1z + a0y

B3 = opoy + asas

These are in KP2"¢ Every permutation of the a; per-
mutes the 3; (S4/D2 = S3), and hence

9(x) = (z = B1)(z — B2)(x — B5) € F[X]

‘We also have
P20 = K(8;)

Lecture 13 — 2/22/12

Let

_ eQTr'L/n

Cn

be an nth root of unity. We will assume that n is some
prime p. We know that the irreducible polynomial for ¢,
over Q is

R |
which has roots ¢,¢?,...,¢P~. Hence, Q((,) is its split-
ting field, and therefore also a Galois extension of Q with

Q&) Q=p—1

Definition 13.1. We call F((,) a cyclotomic extension.

Proposition 13.2. Gal(Q((,) : Q) = Cp_;.

Proof. Let G = Gal(Q({,) : Q). We know that every
o € G is determined by its mapping ¢, — ¢}. Then let

0i(Cp) = C;,
Since ¢§ =1, there is a natural bijection
X
G—F,
i —1
which is an isomorphism. Since F,; = Cp_1, we have our

desired result. |

Observation 13.3. Note that (0;) = G iff (i) = F).
Also, our proof above works just as well for any arbitrary
field F C C, not necessarily Q. However, in the case of
general F', we instead get that Gal(F({,) : Q) < Cp_1.
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Example. Consider ¢ = (y7. Since (3) = F, we know
that
G = (03)

where G = G(K/F). Let 0 = 03. The subgroups of G
are
(0) > (0%) 2 (0") 2 {0®) O (id)

which corresponds to the tower of extensions
F = KO 2y grlo® 2y gloh) By o) P i

Now let § = 27/17. We claim that F(cosf) = K.
Since ¢ + (7! = 2cosf, we know that cos§ € K. More-
over, ( satisfies the polynomial

(x— ) (xr— (') =2% —2(cos )z + 1 € F(cos )
Thus,
[K : F(cosf)] <2

and [F(cosf) : F] > 8

So F(cosf) is either K(°) or K. But F(cosf) C R,
whereas K Z R; thus,

F(cosf) = K%
as desired.

Lemma 13.4. Let ( = (. Let
a=ci(+ e+ F (P!

be a linear combination with ¢; € Q.
c1L=C=-"=c¢Cp_1 and o = —cy.

If a € Q, then

Proof. Since ( satisfies
ANV |
we can solve for (P~! and rewrite
a=(—cp-1)l+(c1 —cp-1)(+ -+ (cp2 — Cpfl)CZF2

Since {1,¢,...,(P~2} are a basis for K/F, we must have
all coefficients except —c,_1 equal to zero. This gives our
desired result. |

Example. Again, take ¢ = (37. Taking iterative powers
of 3, we get the powers

1,3,—8,-7,—4,5,—2,—6,—1,-3,8,7,4, —5,2,6

Recall that ¢ = o3 is a generator for the Galois group
G = Gal(K/F). The orbit G¢ (under the action of au-
tomorphism) is the set {¢* : ¢ # 1}. Let H = (o). H
splits G( into two H-orbits,

{<’<78?<747"'} {CS7§77’€5"}

20

Let a1, ay denote the orbit sums. Then {aj,as} is a
G-orbit, and our study of fixed fields tells us that the
irreducible polynomial for a; and s is

(x —a1)(z — ag)

To compute this polynomial, we want to determine

si(a) = a1 + as sa(@) = ajag

Since s, is the sum of all ¢¢ with ¢* # 1, the irreducible
polynomial of ¢ gives

s1(a) = -1

We can compute sa(a) by our previous lemma. Since
s2(a) € Q and since expanding ajasg results in 64 sum-
mands of the form ¢?, we know that each (; appears four
times, which yields

s2(a) = —4
Then our polynomial is
(x—a))(z—az)=2>+x—4
Its discriminant is D = 17, and hence K@) = F(V/17).

In the same way, we can determine the quadratic ex-
tension over a field F' that is contained in F((p) for any
odd prime p.

Proposition 13.5. Let p # 2 be prime. Let L be the
unique quadratic extension over Q contained in Q((p). If
p =1 (mod 4), then L = Q(\/p); if p = 3 (mod 4), then
L=Q(v/=p).

Note that we know the extension is unique by the Ga-

lois correspondence, since the cyclic group F¢ for p prime
has exactly one subgroup of index 2.

Proof. Analogous to the example. |

Theorem 13.6 (Kronecker-Weber Theorem). Every Ga-
lois extension of Q with an abelian Galois group is con-
tained in a cyclotomic extension Q((y,).

Observation 13.7. Let

ai, a2

n=pi'py Pyt

be the prime decomposition of some n € N. Then the
fields Q((,e:) intersect only in Q and

[TQ:) = Q)

Theorem 13.8. Let F' be a field with ¢, € F for some p
prime, and let b € F with b # 0. Then the polynomial

gla) =" —b

is either irreducible or splits completely in F.
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Proof. Let K/F be the splitting field of g and suppose
there is a root 3 of g not in F. Then [K : F] > 1, which
means Jo € Gal(K/F) : o # id. Since (8 generates K,
a(B) = ¢, B8 for 0 < r < p. Meanwhile, (¢,) = ¢,. Then

oM (B) =B

This attains every root ¢*/3, and hence the action of G is
transitive on the roots of g. Thus, g is irreducible over F,
which completes our proof. |

Theorem 13.9. Let F' C C be a subfield containing ¢,
for p prime, and let F — K be a Galois extension with
degree [K : F| =p. Then K = F(¥/a) for some a € F.

Proof. See Artin. |
Lecture 14 — 2/24/12
Definition 14.1. Let K;,K; C K be subfields. The

composite field of K7 and K5, denoted K7 Ko, is the small-
est subfield of K containing both K7 and K. We can also
define the composite as the intersection of all subfields
K’ C K containing both K7, K C K’ as subfields.

Proposition 14.2. Let F' — K be a field extension,
and let K1/F and Ky /F be finite field extensions of F
contained in K. Then

[K1Ky: F) < [K;: F][Ks : F|

Proof. Let {aj,...,a,} be a basis for K;/F, and
{B1,.-.,Pm} a basis for Ko/F. Then we have
KKy = Ki(B1,. .., Bm) = Flau, ..

The 8; span KK, over K, so

s Bm)

'70[77,7517"'

[KlKQZKl] Sm: [KQF]

with equality iff the §; are independent over K. |

Corollary 14.3. If [Ky : F] = n, [K;
ged(n,m) =1, then

: F| = m, with

[K1K2 : F] = [Kl : FHKQ : F}
Proposition 14.4. Let F — K be a Galois extension,
F — F' any extension. Then KF'/F' is a Galois ex-
tension with Galois group

Gal(KF'/F') = Gal(K/K N F')

We have the diagram

21

K/KF’k )
N

KnF’

F

Proof. Since K/F is Galois, K is the splitting field of a
polynomial f € F[X]. Then KF’'/F’ is the splitting field
of f € F'[X], and hence KF'/F' is Galois. Consider the
restriction map

¢:Gal(KF'/F") — Gal(K/F)
or— 0|k

This is a homomorphism with kernel
ker p = {0 € Gal(KF'/F') : 0| = id}

Note that o € ker ¢ is the identity on both F’ and K by
construction. Thus, ker ¢ = {id}, and hence ¢ is injec-
tive.

Let H = im ¢, K the corresponding fixed field in K
containing F. Since H also fixes F’, we know that

KO KNF
Meanwhile, the group Gal(KF’/F') fixes K¥ F'. By the

Galois correspondence, this tells us that
KHF' =F'

which means K C F’ and hence K C K N F’. Then
K" = KN F', and the Galois correspondence yields

H = Gal(K/K N F')

which completes our proof. ]

Corollary 14.5. Let K/F be a Galois extension, F'/F
any finite extension. Then

;o K :F|[F:F]
KE - Fl = = e

Proposition 14.6. Let F be a field, K1/F and K3/F
Galois extensions. Then K1 N Ko /F is Galois.

Proof. Let f € F[X] be an irreducible polynomial with
root @ € K1 N Ky. Since a € K; and K; is a splitting
field over F', f splits in each. Then f splits in K7 N Ko,
which is therefore Galois as desired. |

Proposition 14.7. Let F be a field, K1/F and Ko/F
Galois extensions. Then K1 K5/ F is Galois, and

Gal(KlKQ/F) = {(07 T) : J|K1QK2 = 7—|K10K2}



Math 123—Algebra 11

Max Wang

KK,

Ky

N
i
7

Proof. We know that K; is the splitting field of some
polynomial f; € F[X], and similarly K for fo € F[X].
Then K; K5 is the splitting field of fi fo (eliminating mul-
tiple roots). Hence, K; K> /F is Galois.

Consider the homomorphism

Q: Gal(KlKQ/F) — Gal(Kl/F) X Gal(Kg/F)
o (J|K1aU‘K2)

Its kernel is trivial on K; and on K5 and hence on the
composite, so ¢ is injective. Since

(olx)kinK, = 0lkinK, = (0]K,) | KK,

we know that imyp C H.

Note that for each o € Gal(K/F), there are precisely
| Gal(Ko /K1 N Ky)| elements 7 € Gal(K»/F) satisfying
U|K10K2 = T|K10K2~ Then

|H| = | Gal(K1/F)|| Gal(K2 /K1 N K»)|

|IG

al(K1 N KQ/F)‘
Then we have |H| = |Gal(K1K2/F)| = [K1Ks @ F),
which yields
imp=H
which completes the proof. |

Corollary 14.8. Let K1/F and K3/F be Galois exten-
sions. If K1 N Ky = F, then

Gal(KlKg/F) = Gal(Kl/F) X Gal(Kz/F)

Conversely, if K/F is a Galois extension with
Gal(K/F) = Gy x G2 a product of two subgroups, then
there are two Galois extensions Ki/F and Ky/F such
that K = K1K2 and Kl ﬂKQ =F.

Lecture 15 — 2/27/12

Definition 15.1. Let F' be a field, « algebraic over F.
We say that « is solvable if o« € K for some K that can
be obtained by a tower of field extensions

Kiy=F—K  —Ky— -+ —K, =K

where K;/K;_1 is Galois of order p; prime.

22

Observation 15.2. Let Qg be the field of solvable num-
bers over Q. The field of constructible numbers Q¢ is
given by those elements o € Q obtained by a tower of
extensions with [K; : K;_1] = 2; it is clear, then, that

Qc € Qs

Now choose some 3 € Qg C Q. Then we claim that
a € Q is solvable iff it is solvable over F = Q(B). If
« is solvable over F, we can simply append the tower
F < F(a) to the tower Q < F, which yields solvabil-
ity over Q. If instead « is solvable over Q, it is trivially
solvable over F. Although some extensions in our tower
might collapse, none will decompose because they all have
prime degree. This yields the following diagram:

where the horizontal edges represent equality.

Theorem 15.3. Qg C Q. Specifically, suppose o € Q
has irreducible polynomial f € Q[X], and let K be the
splitting field of f/Q. Then if Gal(K/Q) is As or Ss,
then a is not solvable.

Proof. Let G = Gal(K/Q). WLOG, we can assume
G = As. For if G = Ss, then Gal(K/Q(vV/D)) = As,
and we can simply replace Q with Q(v/D).

If « is solvable, then we have a tower

_ KF,
n |

KF,_,
Foor |
-

‘ KF
F ‘
K
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Our theorem then reduces to the following lemma:

Lemma 15.4. Let K/F be Galois with Gal(K/F) = As,
L/F also Galois with Gal(L/F) = Z,. Then we have the
following diagram

KL
As
/
L Zp
Zp K

T

F

Proof of Lemma. We have only two possibilities for
Gal(KL/K). First, suppose Gal(KL/K) = {e}. Then
KL =K, so Gal(KL/F) = As. But this yields a surjec-
tion As — Z,, which is impossible.

It must be the case, then, that Gal(KL/K) = Z,.
Then [KL : K] = p, and it follows that [KL : L] = 60.
Moreover we know we have an injection

Gal(KL/L) — Gal(K/F)

and so we must have Gal(KL/L) = Gal(K/F) = As, as
desired.

It remains still to be shown that there ezists such a
polynomial f as we assumed in our hypothesis. We will
show that 3f € Q[X] irreducible and of degree 5 with
Galois group S5. To do so, we make use of the following
lemma:

Lemma 15.5. If G < S, is transitive (or equivalently, if
G contains a p-cycle o) and G contains a transposition
T =(i,7), then G = 5,.

Proof of Lemma. We begin by relabeling the set of letters
{1,...,p} so that o takes 1 — 2 — .-+ — p — 1. Now
replace o by 07~%. Then o carries i — j. We can relabel
our letters again so that

c=1—=2— - -—=p—=1
T=1—2—1

which makes 0 = (1,...,p) and 7 = (1,2). Then

oro~!t = (2,3), and repeated conjugation yields

Vie{l,...,p}, G > (i,i+1)

These transpositions generate .S, as desired.

Claim 15.6. 3f € Q[X] irreducible and of degree 5 with
Galois group Ss.
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Proof of Claim. Consider the splitting field K /Q for such
a polynomial. We know that Gal(K/Q) would be tran-
sitive in S5 (i.e., would contain a 5-cycle). We want to
construct f such that it also contains a transposition. In
other words, we want f to have exactly 3 real roots and

2 complex conjugate roots.
Take

folx) = x(x® — 4)(z* +4)
= 2% — 16z

This polynomial is negative in (—oo, —2) and changes sign
at —2, 0, and 2. Its local maximum in (—2,0) is 15, and
its local minimum in (0,2) is —15. Thus, we can add a
constant term —15 < ¢ < 15 and preserve the form of our
roots. By the Eisenstein criterion for p = 2,

f(x) = fo(x) +2=2° - 162 +2
is irreducible.

This completes the proof of our theorem. |

Lecture 17 — 3/2/12

Definition 17.1. A representation of a finite group G
is a finite-dimensional complex vector space V with an
action of G on V; that is, a map

pPrGxV —V
satisfying
Vg.he G.Yv eV,  p(g,p(h,v))=p'(gh,v)
Equivalently, we have a homomorphism

p:G— GL(V) = Aut(V)

Definition 17.2. A morphism of representations V', W
of G is a linear map ¢ : V' — W that commutes with the
action of Gj that is, the following diagram

V2w

| ]

V— W

commutes Vg € G. Note that on the left, we have written
g for py(g), and similarly for py (g) on the right, so more
verbosely, we have

epv(g) = pw(g)p

We can also think of the map as respecting conjugacy:
@ = gpg~'. A morphism is, in particular, a G-module
homomorphism.
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Definition 17.3. A subrepresentation of a representa-
tion V of a group G is a vector subspace W C V that is
invariant under G; that is,

Vge G, gW)=W

The direct sum of two representations V', W of G is also
a representation, given by

g (v,w) = (9v, gw)

Recall that the dual space V* = Hom(V,C). To define
the dual representation, we want the pair v, v* to be asso-
ciated with p(g)v, p*(g)v*; that is, we want p* to preserve
the dual relationship. We know that the map V' L w

induces the dual map W* N V*, which is defined by

V2w
P
C

fg (M) —k

However, if we have
v Ly 2y

then {(hog) = g o th. Then we cannot define the action
p* by the transpose; instead, we take

g™ VI VT

p*(g9) =
which is a valid representation and respects duality.
Example. Let G be any finite group.

1. Let V = C. The trivial representation is given by
taking g = id; that is, gv = v.

. Let V = C; then Aut(V) = C*. We get another

Given a finite group G, our goal in our study of repre-
sentations is to classify, to describe, and to construct all
representations of G.

Definition 17.4. We say that a representation V of G is

irreducible if it has no nontrivial subrepresentations; that

one-dimensional representation via the character

homomorphism

x:G—C*

Let V' be a vector space with basis {e, : g € G}.
The regular representation is given by

g:eptrregn

. Suppose G acts on a set S. The associated
permutation representation is a vector space V
given by a basis {e; : s € S}. The action of G
on V is given by

g:est— €g(s)

For instance, S, acts on C™ by permuting the coor-
dinates.
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is,
W CV,W#0:VgeG, gW)=W

Theorem 17.5. Fvery representation of a group G is a
direct sum of irreducible representations.

Proof. The theorem follows immediately from the fol-
lowing lemma:

Lemma 17.6. Let V' be any representation, W C V a
proper subrepresentation. Then IW' C V a subrepresen-
tation such that V=W & W',

We supply two proofs for this lemma.

First Proof of Lemma. We want an inner product h that
is preserved by the action of Gj; that is, Vg € G,

h(v, u) = h(gv, gu)
Recall that an inner product is a positive definite Hermi-
tian form; that is, it satisfies
1. Conjugate symmetry. h(v,u) = h(u,v).

2. Linearity in the first argument.

h(v +w,u) = h(v,u) + h(w,u)
h(dv,u) = Ah(v, u)

3. Positive-definiteness. h(v,v) > 0 with equality iff
v=0.
Take hg to be any inner product on V. By averaging over
G,
h(v,u) = Z ho(gv, gu)
e

we get such an inner product. Then the subspace W=+
taken with respect to h is our desired complementary sub-
representation.

Second Proof of Lemma. Let W' C V be any comple-
mentary linear subspace, and take

P V=WaW —W

to be any projection map. We want a projection p re-
specting conjugacy. Once again, we simply average over
all of GG, and define

p=> gopyog "
geG

Then ker p gives our desired complementary subrepresen-
tation.
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This proves the theorem. |

Example. This decomposition into irreducibles does not
hold in general for infinite groups; consider, for instance,

~ o

Lecture 18 — 3/5/12

Before continuing with our study of representation theory,
we take note of the following two preliminaries:

Theorem 18.1. Let V' be a finite-dimensional complex
vector space, g 1V — V' a linear map with

g" =id

for some n € N. Then g is diagonalizable; that is, V has
an eigenbasis of g-eigenvectors.

Note that if G is finite, g" = e for some n for every
g € G, so we can always diagonalize g’s representation as
a linear map.

Theorem 18.2. Define

() = Z zk

be the power sums over the variables x1, ..
set Ty, ..
over Q.

T The
., Tn generates the ring of symmetric polynomials

We will devote most of this lecture to studying the rep-
resentations of the simplest nonabelian group, S3. From
the outset, we have two obvious irreducible representa-
tions:

1. U, the trivial representation, where U = C and S3
acts as the identity.

~

2. U’, the alternating representation, where U’ = C
and S3 acts as the sign character.

We also have the permutation representation, where S3
acts by permuting the coordinates of C3. However, this
representation contains a copy of U, namely

U{(z,z,x):zeC}

Taking the complementary representation, we get a third
irreducible representation

3. V, the so-called standard representation, given by

V={(z,y,2) e +y+z=0}

25

This is irreducible because the action of S5 on U is faith-
ful, and hence no subspace is invariant.

Now let W be any representation of G. We will ap-
proach the problem of describing W by considering the
eigenvalues and eigenvectors of the action of S5 D Az O
V. Let 0 = (1 2 3) € A3, and let w = €2™/3 be a primi-
tive cube root of unity. o has eigenvectors (1,w, w?), with
eigenvalue w, and (1,w?, w) with eigenvalue w?. It is easy
to see that span(v,w) = V.

Now let 7 € S3 be any transposition. We have

Tor ! =0
Suppose that v € W is a og-eigenvector with eigenvalue
w. We claim that w = 7(v) is also an eigenvector, with
eigenvalue w?. For we have

So T acts by exchanging the wi-eigenspaces of o. If W is
irreducible, then W = span(v,w) = V.

Suppose instead that v has eigenvalue 1. Then w =
7(v) is also an eigenvector with eigenvalue 1, since 7 only
transposes the w- and w?-eigenspaces. We have the fol-
lowing cases:

1. w=wv. If W is irreducible, then W = span(v) = U.

2. w = —v. If W is irreducible, then W = span(v) =
U’

3. w, v linearly independent. Then

span(v 4+ w) 2 U
UI

1

span(v — w)

This demonstrates that U,U’, and V are the only irre-
ducible representations of S3.

In general, this example illustrates that to understand
a representation V' of a finite group G, we want to know
the eigenvalues of each element g € G. We can use sym-
metric polynomials (since the eigenvalues are expressed in
the characteristic polynomial) to convey this information.

Since the power sums generate the ring of symmet-
ric polynomials, it will be enough to know for each g the
sums > AF, for this knowledge can be used to retrieve the
\; themselves. But if ¢ has eigenvalues );, then ¢* has
Ak as its eigenvalues. This then motivates the following
definition:
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Definition 18.3. If V is a representation of G, we define Proof. If w = ¢(v), then for any h € G,

the character map
hw = hg(v
x:G—C IG 1G] 2

geG
g +— tr(g) Z
G
that is, we associate g with the sum of its eigenvalues. | | 9€G

Observe that x(g) depends only on the conjugacy class = ¢(v)
of g € G (since conjugation changes only the eigenvector,
not the eigenvalue). Hence, we can think of the character

=w

as a map and if v € V&, then
x: ¢ —C
| | p0) = = 0=
where ¥ is the set of conjugacy classes of G. \ | pere;
The character table for S5 is given by and hence p? = ¢, as desired. (]
1 3 2 We thus have
Sg e (1 2) (1 2 3) dim V¢
Ul 1 1 —
ulr -1 1
V|2 0 -1 L 0
Note that xy () is 0 because it is a transposition w <+ w? Y= . 0
and hence has zeros along the diagonal. On the other
hand, we know that o has eigenvalues w and w?, and 0
_ 2 _
hence xv (o) = w+w? = —1. and hence
. G . .
Lecture 19 — 3/7/12 dim v 7tr1(<p.V%V)
= — tr(g: V-V
Let V be a representation of G. Recall that the character |G| ; r(g V)
of V is given by g
> xvlg
XV : G—G |G| pre

gr—tr(g: V=) This dimension is the number of copies of the trivial rep-

Definition 19.1. The invariant subspace of G of a rep- resentation in the decomposition of V. In particular, if

resentation V is given by V is irreducible (and not the trivial representation), the
sum
={veV:gv=u,Vg<cG} ZXV(Q):
geG

. G C . .
It is easy to see that V™ € V' is a subrepresentation. Definition 19.4. The space of representation morphisms

Definition 19.2. The space of endomorphisms of a vec- between representations V' and W of G is denoted
tor space V- is Home(V,W) = {a:V = W | a = pw(g) " oaopy(g)}
End(V) = Hom(V, V) This is a subspace of Hom(V, W). Note also that

We want to know how we can determine V&, or at Hom(V,W & W') = Hom(V, W) & Hom(V, W')
least determine its dimension. To do so, we once again

. . . . Th U = Hom(V, W) fi tural -
rely on averaging over GG to obtain G-invariance. © space om( ) forms a natural represen

tation of G, given by

Theorem 19.3. The map ¢ : V — V given by pv(g) : Hom(V, W) —s Hom(V, W)

-1
a— g ag
o) =1 Z . .
geq The key observation to make here is that
is a projection map V. —» V©. Hom(V, W)G = Home (V, W)

26
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Lemma 19.5 (Schur’s Lemma). Let V., W be irreducible
representations of G. Then

1 v=w

d. H V,W =
im(Home( ) {0 otherwise

Proof. Let ¢ € Homg(V,W). Both kerp C V and
imp C W are subrepresentations. Thus, either ¢ = 0
or ¢ is an isomorphism (due to the irreducibility of V'
and W). It remains to be shown that the space of iso-
morphisms is 1-dimensional in the second case. Suppose

V = W. Then the map
p:V —V € Homg(V, V)

has an eigenvector with eigenvalue A\. Then ¢ — Al has a
kernel, so ¢ — Al = 0. ]

Definition 19.6. Let V and W be vector spaces. The
tensor product is a vector space V ® W with a bilinear
map

p:VeW —VeW
(v,w) —VvRW

We provide three equivalent definitions for the tensor
product (although we will not prove their equivalence)

1. Let {v1,...,v,} be a basis for V, {wy,...,wy,} a
basis for W. Then we define V@ W as the vector
space with basis {v; ® w;} and extend the map ¢
by bilinearity. This definition readily yields

dim(V@ W) =dimV - dim W
2. Let U be the vector space with basis
{vew:veV,weW}
We let U’ be the subspace spanned by

w+r)ow—(vew+v @w)
M) @w—A(vew)
v (w+w)—(vRw+vuw)
v (Aw) — A(v @ w)

We define the tensor product as the quotient
VeW=U/U
and we take (v, w) — v ® w.

3. We take V @ W to be the universal object for bilin-
ear maps V @ W — U. That is, every bilinear map
a:V &W — U factors uniquely through V @ W.

Veaw L vew LU

where (3 is linear. We have a natural bijection of

{bilinear maps VoW — U}

!

{linear maps V@ W — U}
Note that if U = C, we have
(V ® W)* = {bilinear maps V & W — C}

The tensor product of two representations V and W
yield a natural representation given by

g(v®w) = gv ® gw

Lecture 21 — 3/19/12

Let V be a representation of a finite group G with basis
€1,...,en. We will notate
VR =V @0V
—_————
k

Definition 21.1. The k-th symmetric power of V', de-
noted

Sym*V c vk

is the subspace invariant under Sy. For vy, ..
we write

LU €V,

1
Ul"'vk:H E UJ(1)®-..®UU(k)€V®k
'UESk

Then vy - - v € Sym”* V, and
{e’Ll DY
is a basis for Sym” V.

Definition 21.2. The k-th alternating power of V', de-
noted

e, 1 1<ip <o < <n}

ANV c vk

is the subspace skew-invariant under Sy; that is, where
o(v) = eov for o € Si, with

go = sgn(o)

For vy,...,v, € V, we write

1
Ul/\"‘/\vk:H Zsava(1)®...®va(k)€V®k
€Sy
Then vy A -+ Avg € AFV, and
{ea, Ao Neyy, 1<y <+ <ip<n}

is a basis for A¥V. Note that we have < rather than
< because a wedge product where any of the terms are
equal will be zero, since transposing them must alternate
the sign.

27
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Proposition 21.3. Let V and W be representations of

a finite group G. Then the following formulas hold
1. xvew = xv + xw
2. XVew = XV ' XW
3. Xve =XV

xv(9)? + xv(g?)
2

4' XSym? V(g)

xv(9)? — xv(g?)
2

5. xnevig) =

Proof. Suppose g has eigenvalues {);} as an endomor-
phism of V' and {u;} as an endomorphism of W. Then
{Ai}U{p;} and {\;-p;} are the eigenvalues for g on VW
and V ® W respectively, which proves (1) and (2). We
know that {\;} are n-th roots of unity, for n the order of
g. Hence, {\;' = \;} are the eigenvalues for g on V*,
which proves (3). For g on Sym?V, the eigenvalues are
{XiAjbicis so

XSym? vig) = Z Aidj

i<j

(X /\z‘)Q + 2N
2

_ XV(9)2 + Xv(gg)
2

Similarly, g on A%V has eigenvalues {\;);}i<;, so

Xnzv(9) =D A

_ () -
2

_ xv(9)? = xv(g®) -
2

Definition 21.4. Let C¥ C C¢% denote the class
functions, those functions G — C whose value on an
element g € G is determined entirely by the conjugacy
class of g.

If V and W are vector spaces, then we have
Hom(V, W)= V*@W
via the map

p: VW

1
v»—)f(u)-w) e
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It follows from this, and the first projection formula,
that, if V and W are irreducible representations of a finite
group G, then

1

dim Homg(V, W) = @l

> xveaw(g)

geqG

= ﬁ S0 (@) - xaw(9)

geqG

1 vew
0 otherwise

To describe this equation, we can define a Hermitian inner

product on C* by

1 _
O ) = i > x(9) - ¥(9)

geG

Then we have proven that

Theorem 21.5. In the inner product space of C¢ given
by (x,v), the characters of the irreducible representations
of a finite group G are orthonormal.

This has a number of consequences.

Corollary 21.6. There are only finitely many irreducible
representations, at most the number |€| of conjugacy
classes of G.

We will show shortly that, in fact, equality holds be-
tween the number of irreducible representations and the
number of conjugacy classes of G.

Corollary 21.7. Let V1,...,V; be all the irreducible rep-
resentations of G. Then if V is any representation of G,

V = @ ‘/;@ai
(xv,Xxv;). Moreover, we have

XV = Z aiXv;

and since the xv, are linearly independent (by orthogo-
nality), V is uniquely determined by its character xy .

where a;

Proof. The formula for a; is achieved by decomposing
xv into a sum of irreducible characters, and expanding
by linearity. The number of copies of V; will be the num-
ber of times a term (xv;, xv;) evaluates to 1. [ |

Corollary 21.8. A representation V 1is irreducible iff
(xv,xv) =1

Proof. The forward implication is obvious. The reverse
is true because otherwise, V is a direct sum of irreducible,
in which case we can decompose the inner product until
it is expressed purely in terms of {(xv;, xv;)} where the
V}. are irreducible representations. The sum of these will
necessarily be strictly greater than 1. |
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Corollary 21.9. Let V be an irreducible representation,
U any one-dimensional representation. Then U @ V is
irreducible.

Proof. We have

(XU@VaXU@V XU®V(9)

Z xvev (g

geG

ZXU

geG

ZXU

geqG

Iﬂ

=|é| ) xv(9) - xv(g)

|G| xv(g) - xv(g) - xv(g)
= (xv,xv)
=1

which yield irreducibility, as desired. |

Theorem 21.10 (Fixed Point Theorem). If V' is the per-
mutation representation associated with the action of G
on a finite set X, then

xv(g)=#{r e X : gz =2x}

that is, the character of g is the number of elements in X
fized by g.

Proof. Recall that V' has basis {e; : z € X} and an el-
ement g € G permutes the basis vectors according to its
permutation of X. Then g has 1’s on the diagonal exactly
when g(e;) = e, and 0’s elsewhere; hence, its character
is exactly the number of fixed points. |

Observation 21.11. Let R be the regular representation
of G. Recall that it has basis {e, : g € G}, with

g:ept>egn

By the above theorem, the character of R is given by

xﬂm={

We first note that R is not irreducible if G # {e}. Now
if V; are the irreducible representations and a; their mul-
tiplicity in the decomposition of R, we have

|G
0

g=e
otherwise

=ume>

|G| ZXR

geG

= xv;(e)
=dimV;

(9)
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So every irreducible representation V; appears in R ex-
actly dim V; times. Therefore,

G| =dimR =) dim(V;)?

Note also that, for g # e, we have

0= xr(9)

= Z a; Xv; (9)
= Z dim Vixv, (g)
:E:X%@MV@)

These formulas are useful in filling out the character table
for a given group.

Example. Let G = S5 and suppose we want to deter-
mine the character of V ® V' (where V is the standard
representation). Then we simply take the square of xv,
yielding

1 3 2

Sy e (12) (123)
U 1 1 1
U’ 1 -1 1
\%4 2 0 -1
Vav |4 o0 1

Let us now apply these theorems by writing out the
character tables for Sy and A4. Let U and U’ denote the
standard and alternating representations, whose charac-
ters we can deduce immediately.

1 6 8 6 3
Syle (12) (123) (1234) (12)(34)
U1 1 1 1 1
Uil -1 1 ~1 1

Now let V' be the standard representation given by
V={(z,y,z,w) eC:ax+y+z+w=0}
with C* = U @ V. We know from the fixed point the-

orem that C* has character ycs = (4 2 1 0 0), and by
subtracting the character of U, we get

1 6 8 6 3
Sile (12) (123) (1234) (12)(34)
Ut 1 1 1 1
Ul -1 1 -1 1
Vi3 1 0 -1 -1
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We can check that V is irreducible by taking the inner
product of the character with itself:

(xvs ) = o= (1(3%) + 6(12) + 8(0?)

24
+6((=1)%) +3((-1)%))
1
= 5;(9+6+6+3)
=1

Note that the sum of the squares of the dimensions (which
are listed in the first column, for e) is only

124+12432=11<24

and hence we are not done enumerating our irreducible
representations. There must be additional representa-
tions whose dimensions, when squared, sum to 24 — 11 =
13. But this can only be partitioned as

22 +32=13

We get another irreducible representation by taking the
tensor product U’ ®@ V.

1 6 8 6 3

Sy e (12) (123) (1234) (12)(34)
U |1 1 1 1 1
U1 -1 1 ~1 1
vV o3 1 0 -1 -1
UeVv |3 -1 0 1 ~1

We know that U’ ® V is irreducible, and it is distinct
since its trace is distinct. Our final irreducible, which we
will call W, can be determined purely from orthogonality
relations, in particular, the formula

Z xvi (e)xv;(g) =0

since we know that xw(e) = dim W = 2.

1 6 8 6 3

Sy e (12) (123) (1234) (12)(34)
U |1 1 1 1 1
U1 -1 1 ~1 1
vV o3 1 0 ~1 -1
UeVv |3 -1 0 1 -1
w2 0 ~1 0 2

The character allows us to determine the form of W.
Since (12)(34)isan involutiorﬁwith trace 2, and since its
eigenvalues must be roots of unity, we decompose 2 = 1+1
and hence (1 2)(3 4) acts as the identity. Note that
(1 2)(3 4) generates the Klein four group, and we have

6 An involution is a function that is its own inverse.
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the quotient S4/Vy = S3. Then we see that W is the
standard representation of S3 pulled back along this quo-
tient:

Sy — GL,

N

S4/V4

Note that, in general, if N <1 G is a normal subgroup,
a representation p : G — GL(V) is trivial on N iff it
factors through the quotient

G—— GL(V)

N

G/N

Now consider A,. Note that (1 2) and (1 2 3 4) are
simply not found in A4, and (1 2 3) splits into two con-
jugacy classes, (1 2 3) and (1 3 2). We can easily check
that U and V remain irreducible, while U’ collapses into
U, and similarly U’ ® V collapses into U @ V = V.

1 4 4 3
Ay e (123) (132) (12)(34)
uvx=U' |1 1 1 1
Vv 3 0 0 -1
This only accounts for
17 +3%=10

squared degrees, so we are short two one-dimensional rep-
resentation. Note that we have

Sy —» S3
A4H}A3

with A3 = Z/3. From this and the details below on
abelian groups, we get

1 4 4 3

Ay e (123) (132 (12)(34)
uv=vu' |1 1 1 1
v 3 0 0 -1
W1 1 w w2 1
WQ 1 w2 w 1

Observation 21.12. Let GG be an abelian group. Note
that for an arbitrary g € G, the map g : V. — V deter-
mined by a representation p is not, in general, a morphism
of representations, since

g(h(v)) # h(g(v))
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in general. However, if g € Z (G)E] then the above equal-
ity does hold, and hence g is a morphism. But G = Z(QG)
in abelian groups. If V is irreducible, then by Schur’s
lemma, every g € G acts on V' by a scalar multiple of
the identity. Then every subspace of V is invariant, so
dimV =1, and we will have

xv(g) =

The irreducible representations p of G are all therefore
elements of the dual group, which is the group of homo-
morphisms

Cord(g)

p:G— C*

Lecture 22 — 3/21/12

Theorem 22.1. Let Vi,..., Vi be the irreducible repre-
sentations of a finite group G. Then {xv,,...,Xxv,} form
a basis for the space of class functions C¥.

Proof. Recall that, when we consider a representation V'
of G, we can average the elements of G (considered as ele-
ments of End(V)) to obtain a G-module homomorphism.
For instance, we know that

Zg VoV

geG

o=
\GI

is a projection V. — VY. For all representations V and
functions o € CY, let us define

> alo

geG

Pa, v = g:V%V

(€]

To generalize our method of averaging over GG, we have
the following claim:

Claim 22.2. ¢,y is a G-module homomorphism iff
a€C?.

Proof. Consider the reverse direction; we want to show
that Yh € G, v € V, o(hv) = he(v). We have

o(hv) ) - ghv
IGI =
1 _ _
= @ > a(hgh™') - hgh™"hv
geG
since v € C¢ = |G| Z ) - hgv
geG
= he(v)

Now take the forward direction. Assume that Vh € G,
v €V, we have

1 1
@l > alg)-ghv = @ > alg) - hgv
geG geG
Z -hlghv = Z
|G| geG |G| geG

Suppose that V is the regular representation and v = e,.

Z -h~lghe, = Z * gee
| gEG |G| geG
- € , =
|G\ ZG hteh |G| ZG

Note that all summands on each side of the equation
will be linearly independent. If we choose h such that
a(h™'gh) # a(g), then we will have a(g) - e;,-14;, on the
LHS and a(h ' gh)-€ej,-1 4, on the RHS. Then ¢ is not a G-
module homomorphism, and this completes our proof.

When we average over g, we use ¢, v with the con-
stant function « : g — 1; this projects V onto V7, taking
V1 to be the trivial representation (which is irreducible
for any group G). Using a = xv;, ¢q,v similarly becomes
a projection V. —» V.

Claim 22.3. Ifa € C? and (o, xv;) = 0, Vi, then a = 0.
In other words, we claim that the yy, span C?, and

since they are independent by orthogonality, they form a
basis.

Proof. Let V be irreducible, n = dimV. By Schur’s

lemma, the only G-module homomorphisms are scalar

multiples of the identity, so for some A € C, we have
(poé7V = )\I

We wish to determine A. We have

1
A= o tr(Pa,v)

=Y al)

geG
_ Gl
n (@, xv~)
=0

Then ¢qy = EQGG a(g) - g = 0 for all representations
V. Consider V = R the regular representation. In R,
{pr(9)}4ec are linearly independent elements of End (V).
So it must be the case that a(g) = 0 for all g € G, and
hence, o = 0 as desired.

This completes the proof. |

"We denote Z(G) as the center of G, the set of elements of G which commute with all elements; i.e., Z(G) = {# € G : Vg € G, zg = gz}.
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Claim 22.4. Let V be any representation of G. Then
VeV =Sym?’VaenAV

Proof. Let {e;} be any basis for V. Let g € Sy be
the nontrivial element, which acts as a transposition
e; ®e; — e; ®e;, and by bilinearity, v ® w = w ® v
for any v,w € V. ¢ has order 2 and hence its eigenval-
ues are —1 and 1. Its eigenspaces are therefore precisely
Sym2 V and A% V. But, setting n = dim V, we have

which gives our desired result. ]

Let us now take our theory of characters and apply
it by computing the character table of S5. Let U be the
trivial representation, U’ the alternating representation,
and V the standard representation. We immediately get
the characters for these representations and for V ® U’.
We then begin searching for the other irreducible repre-
sentations by taking tensor products, symmetric powers,

. 2 . 2, nn+1) n(n—1) and alternating powers of these irreducibles. Consider
dim Sym*“V +dimA°V = 5 > V © V. We have
= n2
=dmV ®V
1 10 20 30 24 15 20
S5 e (12) (123) (1234) (12345) (12)(34) (12)(345)
U 1 1 1 1 1 1 1
U’ 1 -1 1 -1 1 1 -1
\% 4 2 1 0 -1 0 -1
VeU | 4 =2 1 0 -1 0 1
VeV |16 4 1 0 1 0 1
Note that ever, that V ® V' decomposes as
1
, = ——(256 + 160 + 20 + 24 + 20
(xvev, xvev) 120( ) VeV = Sym2 Vaaly
=4

and hence, xy gy is not irreducible. We do know, how-

Computing these characters, we have

1 10 20 30 24 15 20

Ss e (12) (123) (1234) (12345) (12)(34) (12)(345)
U I 1 1 1 1 1 1
U’ 1 -1 1 —1 1 1 ~1
1% 4 2 1 0 —1 0 —1
VeU | 4 -2 1 0 —1 0 1
A2V |6 0 0 0 1 —2 0
Sym’V |10 4 1 0 0 2 1

We can check that A2V is irreducible by taking its
norm; we have

( )= -
XA2VyXA2V) = 120

=1

(36 + 24 + 60)

It follows from the decomposition of V @ V that Sym? V'
must be the direct sum of three irreducible representa-
tions. We have thus accounted for five irreducibles, and
the sum of squared degrees thus far is

12412442442 4+62=170

We are still short 50 square degrees. This can be decom-
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posed into two squares either as
50 = 1% + 77

or as

50 = 5% + 5
Suppose we have another one-dimensional irreducible rep-
resentation. Any one-dimensional representation is a ho-
momorphism

p: 55 — C*
whose kernel will be a normal subgroup whose image is
abelian. The only subgroup of S5 with abelian quotient
is As, so every one-dimensional representation of S5 must
factor through a representation of S5/A5 = Cs. Then U
and U’ are the only such representations.
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So we have two irreducible representations remaining, We can check that the remaining irreducible representa-
both of degree 5. Consider again Sym? V. Sym? V decom- tion has degree 5; call it W. Taking
poses as three irreducibles, and we can determine that one

is U and another is V' by computing XW = Xsym2 v — (XU + Xxv)
(Xsym2 v, xU) =1 (Xsym2 v, Xxv) =1 we obtain our full character table as
110 20 30 24 15 20
Ss e (12) (123) (1234) (12345) (12)(34) (12)(345)
U 1 1 1 1 1 1 1
U’ 1 -1 1 -1 1 1 —1
\%4 4 2 1 0 -1 0 -1
VeU |4 =2 1 0 -1 0 1
ANV |6 0 0 0 1 -2 0
W 5 -1 —1 1 0 1 —1
WeoU' |5 1 —1 —1 0 1 1
Lecture 23 — 3/23/12 That is, if any v € V' can be written uniquely as a sum of

elements in these copies of W. In this case, we write
Suppose that H < G is a subgroup of a finite group. We

would like to somehow relate the representations of G to V= Indg w
those of H. One direction of this relationship is easy:

E le.
Definition 23.1. Let V be a representation of G. By xampre

restricting the action of G to H < G, we can naturally 1. G acts on its left H-cosets G/H by left multipli-
restrict V' to a representation of H denoted cation. Let V' be the permutation representation of
this action, with basis {es },cc/m. Denote [e] as the

— Redl
W =Res V identity coset [e] = H. The subspace W = (e[) is
We see that Res% is an operator mapping invariant under H, and moreover,
Res% : {reps of G} — {reps of H} o (ee) = {€s) Vo € G/H

Note that by restricting a representation to a sub-

Then we have V = oW, and hence V is
group H, new invariant subspaces may be created. Con- GBUEG/ A

induced from W, which is the trivial representation

trarily, distinct representations on G may become isomor- on H.
phic on H.

What we want now is the relationship in the other di- 2. Let Rg be the regular representation of G, which
rection; from a representation W of H < G, we want to has basis {e,}4ec. Take Ry to be the subspace
induce a representation of G. given by basis {ep }hem. A similar argument easily

Observation 23.2. Suppose that V' is a representation demonstrates that Re is induced from Ry

of G, W C V an H-invariant subspace. Note that, for all

& the sub Theorem 23.4. Let H < G, W a representation of H.
g € G, the subspace

Then there exists a unique (up to isomorphism) induced

gW ={g-w:we W} representation V = Indg wW.
depends only on the left coset gH of g, since We thus have a corresponding operator
(gh)W = g(hW) = gW Ind$, : {reps of H} — {reps of G}

Thus, for ¢ € G/H a left coset of H, we will write
oW = g,W for g, € o any representative. This moti-
vates the next definition.

Definition 23.3. A representation V of G is induced Proof. First, we show uniqueness. Let us start with a

Note that this is not an inverse to Resg! In general, a
representation is not induced by its restriction.

from a representation W of H < G if representation V of G, W C V invariant under H, and
V=P ow V=P ow
ceG/H oceG/H
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We claim that the action of G on V is determined entirely
by the action of H on W and on the group H < G itself.
Choose a representative g, € o for each coset (taking
gie) = ¢€). Given some g € G and 0 € G/H, say go = 7.
Then we can write g - g, = g- - h for some h € H.

We know that each v € V' can be written

v = Z JoWes

c€G/H

for w, € W. But we have

g(gawa) = grhw,

So g(v) = > grhw,. This indeed determines a unique
the group action on V', and this construction also proves
existence. ]

Let us compute the character table of A5 < S5. Note
that the odd permutations are not present in As; more-
over, (1 2 3 4 5) breaks up into two conjugacy classes,
(12345)and (21345).

We know that the trivial and alternating represen-
tations on S5 collapse in As, and we have U = U’.
Then two other pairs of irreducibles also collapse, namely
VVU and W =2 W ® U'. We can restrict the
remaining four irreducibles of S5 to A5 to get

1 20 15 12 12

As |e (123) (12)(34) (12345) (21345)
U |1 1 1 1 1
vV |4 1 0 -1 -1
w |5 -1 1 0 0
ANV 16 0 -2 1 1

Taking the norms of xy, xv, and xw confirms their irre-
ducibility. A2V then cannot be irreducible since the sum
of square degrees would exceed |A5|. Currently, we have
accounted for

12 447 +5% =42

Hence, we have remaining
60 — 42 = 18 = 3% + 32

We can check that

(X/\2 Vi XA2 V) =2

We then claim that A2V =Y @ Z where Y and Z are
our remaining degree 3 irreducible representations.

To show this, consider the automorphism of As given
by conjugation with (1 2). Observer that, while this is an
inner automorphism for Sy, it is an outer automorphism
for A5 since (1 2) ¢ As. This automorphism fixes the
conjugacy classes e, (12 3), and (1 2)(3 4) and exchanges
the classes (123 45)and (21345). A group automor-
phism additionally acts on the set of representations of a

34

group. We start with the characters and compose them
with conjugation by (1 2)—this has the effect of switching
the characters in the last two columns.

Note that, since the characters form a basis, one of
the irreducible representations, say Y, must differe in the
last two columns of the character table. Then by com-
posing xy with the outer automorphism of conjugation
with (1 2), we get another character xz, which is identi-
cal to xy but with the last two columns switched. This
demonstrates that we must, indeed, have A2V =Y @ Z
and not Y @Y or Z@® Z, because doubling the characters
in the last two columns of Y could not yield two 1’s (and
the same is true for 7).

Thus, our character table is

1 20 15 12 12
As |e (123) (12)(34) (12345) (21345)
U 1 1 1 1 1
1% 4 1 0 -1 -1
W |5 -1 1 0 0
Y 3 0 -1 « 1—a
Z 3 0 -1 1—« «
ANV |6 0 —2 1 1

deduced from the fact that xy +xz = xa2v. We can use
orthogonality relations to solve for «; this yields

145
2

a =@

and so we have

1 20 15 12 12
As e (123) (12)(34) (12345) (21345)
U |1 1 1 1 1
V|14 1 0 -1 -1
W |5 -1 1 0 0
Y |3 0 -1 %) %)
Z |3 0 -1 %) %)

Lecture 24 — 3/26/12

Definition 24.1. For every g € G, we get an automor-
phism of G given by conjugation with g

G—G
h+— ghg™!
This yields a group homomorphism

G — Aut(G)

which partitions Aut(G) into a normal subgroup Inn(G)
of inner automorphisms given by conjugation and a com-
plementary collection of outer automorphisms.
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Observation 24.2. Let 7 : G — G be an automorphism, acter table is
\% ‘any r.epreseTntation of G We can obtain another rep- Dy | e Bl 2 jtm g
resentation V7 by composing py with 7.
U |1 1 1 1 1
G i P GV U |1 1 1 1 -1
¢ G Vi |2 CH+Ch CHC? e M 0
Va |2 P4¢2 ¢+ ¢+¢t 0
pvT .

If 7 is an inner automorphism, then
V=V, VvV

If 7 is outer, then it may permute the irreducible repre-
sentations nontrivially, e.g., for G = As.

Let us explore the representations of the dihedral
groups, G = Ds,, the group of isometries of the regu-
lar n-gon. We have the following picture for any dihedral
group:

Chp %ch—>D2n*»Z2
Choose ¢ = (,, any primitive nth root of unity. Let h be
a rotation through 27 /n, g any reflection. Then A" = e,
92 =6, gh = hga and Do, = <hag>
Let V be any irreducible representation. V has an

eigenbasis with respect to h, with eigenvalues ¢*. Sup-
pose that v € V is an h-eigenvector,

hv = (Fv
Then

hlg) = g(h)
= g(¢""v)
= (¢ F(gv)

So gv € V is an h-eigenvector with eigenvalue ¢*. The
subspace (v, gv) C V is thus G-invariant, and hence

V= (v, gv)

For now we will only consider n odd. Then dimV = 2
unless £ = 0. So suppose that h acts as the identity. If
g = 1, we get the trivial representation U; if g = —1, we
get the alternating representation U’.

Note that as with our picture of S5 = Dg, if h has
eigenvectors v; and vy with eigenvalues ¢¥ and (=%, then
g switches them. Thus,

o= (1)

= (5 &)

Since we have m = an pairs of nontrivial ¢¥, our char-

0 1
1 0

Ck
0
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We return now to the study of induced representa-
tions. We begin with some basic properties.

Proposition 24.3. The operator Indg satisfies the fol-
lowing properties:

1. Linearity.

d% (W, @ Wy) = Ind$ (W) @ Ind$, (Ws)

2. Transitivity. For H < K <G,

Ind% (W) = Ind% (Ind % (W)

3. Push-Pull. Let U be a representation of G, W a
representation of H.

U ® Ind$ (W) = Ind (Res% (U) @ W)

Proof. We will prove only the push-pull property. U ®
Indf; W =: V. UeWy is H-invariant V = @,/ 0(U®
Wo) [ ]

Proposition 24.4. Let U be a representation of G, W a
representation of H < G. Then

Homy (W, Res$, U) = Homg (Ind$ W, U)

Proof. We claim that any H-module homomorphism
@ : W — U can be uniquely extended to G-module ho-
momorphism ¢ : Indg W — U. Recall that

Vi=IndgW= oW
oceG/H

Choose any v € oW, which will have the form v = g,w
for some representative g,. We define ¢ on oW by

¢(v) = gopg, ' (v)
= 9009, ' (gow)
= ga@(w)
= ¢(gow)
= ¢(v)

and clearly we have independence of our choice of repre-
sentative g,. This completes the proof. |
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Corollary 24.5 (Frobenius Reciprocity). If U is a rep-
resentation of G, W a representation of H < G, then

(XW7 XResg U)H = (Xlndg W XU)G

This is equivalent to the claim

dim(Hom g (W, Res$ U)) = dim(Home (Ind$ W, U))

Lecture 25 — 3/28/12

Definition 25.1. Let G be any finite group. Define
RG) = {> aVi:Virep of G} /[ (VO W~V W)

This is the free abelian group on the isomorphism classes
of irreducible representations of G; note that

R(G)~7Z°

where c is the number of conjugacy classes of G. Addition
on R(G) is given by @, and multiplication ®.

Theorem 25.2 (Artin). The representations of G in-
duced from cyclic subgroups of G generate a subgroup of
finite index in R(G).

Theorem 25.3 (Brauer). We say a group H = Ax B is
elementary if A is cyclic and B is a p-group with pt|A|.
The representations of G induced from elementary sub-

groups of G generate R(G).

Definition 25.4. The vector space of quaternions is
given by

H = {041 + a9t + aszj + ask : q; ER}
where multiplication is given by
i? =5 =k =ijk=-1

Note that
H=~R*

and hence is a real vector space.

Let us compute the character table for the group of
quaternions

Q = {£1, +i, +j, £k}

We know that {£1} <G is normal, and we have a sequence
of quotient maps

G——»G/{£1} 2 7/2 X L)2 —» T)2

Note that G/{£1} = {1,4,7,k}. Then the second quo-
tient map kills T and one of {i, j, k}, sending the remain-
ing two to the nonidentity element of Z/2, which has char-
acter —1. Thus, we get

Q| +1 -1 +i +j =k
vl1 1 1 1 1
Uil1o1 1 -1 -1
Uil 11 -1 1 -1
Us | 1 1 -1 -1 1
V9i2 -2 0 0 0

We get the final irreducible using orthogonality rela-
tions (also note that if all representations were one-
dimensional, the group would be abelian).

We can identify this representation V as H. We make
H into a two-dimensional complex vector space via com-
plex multiplication on the right. Identifying C = (1,i),
we can take {1,j} as a basis, whereupon we have

1=(1,0) i=(i,0) j=(0,1) k=(0,—i)

The elements of @) act via left multiplication on H. Since
H is associative, this is indeed a representation, and we
can check it against our character table.

Definition 25.5. A representation V of G is a real

representation if we can write

V=VWarC

with an action of G on Vj that extends by linearity to the
action of G on V. In other words, for some choice of iso-
morphism GL(V) 2 GL,, C, the representation p factors
through GL, R:

p

G

GL(V) = GL, C

N
~ /
N
N
Y
GL, R
Let us look at the construction V = Vi ®g C more
closely. Say V| is a real vector space of dimg V) = n.
Then, taking C as a two-dimensional real vector space,
V =V, ®g C is also a real vector space of dimg V' = 2n.
However, V' also has the structure of a complex vector
space of dim¢ V' = n, given by
(@A) =v®iA
That is, if we write
Vo ={a1v1 + -+ apv, 1 a; €R}
we have
V=VerC={av1 + -+ ayv, : a; € C}

V' is called the complexification of V. We can see from
this that any g : V' — V € G can be represented either
as a complex matrix or as a real matrix with twice the
dimension, if V' is a real representation.
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Example. Consider G = Z/3 acting on
V=A{(z,9,2) €eC’:a+y+2=0}

This representation is real because it breaks into Vj ®g C
for

Vo={(z,9,2) R’ 1z +y+2=0}

We know that Vy ~ R; in this interpretation, G acts via
rotation through 120°. Note that, setting v = (1, w,w?)
and w = (1,w? w), we have

V =C(v)®C{w)

However, neither of these component vector spaces is real,
so V' is irreducible as a real representation.

Observation 25.6. Note that real representations have
real character, but the converse is not true. For instance,
the representation V of the quaternion group has real
character, but is not real.

Definition 25.7. A symmetric bilinear form on a vector
space V is a map

B:VxV—->C

such that, Yu,v,w € V, VA € C,

1. B(u+v,w) = B(u,w) + B(v,w)
B(Av,w) = AB(v,w)
3. B(u,v) = B(v,u)

A bilinear form yields a map

ag:V —V*
v+— B(v,")

which takes a vector v to B pre-parametrized with v as
an argument. We say that B is nondegenerate if this map
ap is an isomorphism.

Recall that if V' is a representation of G, then V ad-
mits a positive definite Hermitian inner product H which
is G-invariant; we took any Hy and then averaged, yield-

ing
> Ho(gv, gw)
g€eG

H(v,w)

IGI

We would like to know whether we can also find a non-
degenerate symmetric bilinear form B on V. Note that,
if we try to choose By and average, we get

Z By (gv, gw)

geG

B(v,w)

IGI

But note that By cannot be positive definite over C, since,
for instance,

By (iv,iw) = —By (v, w)

We do not want B to be trivially zero anywhere, so we
demand nondegeneracy. As it turns out, this is true if
and only if V' is real (since By can be positive definite on
the real vector space Vp).

Lecture 26 — 3/30/12

Let V be an irreducible representation of a finite group
G. We know there exists a G-invariant positive definite
Hermitian form H : VxV — C on V. That is, H satisfies

H(gv, gw) = H(v,w), Vg € G, Yo,w eV

We wish to determine whether there also exists a G-
invariant nondegenerate symmetric bilinear form B
V xV — C on V. Every bilinear form gives a map

ag:V —V*
v+— B(v,")

That B is nondegenerate means that ap is an isomor-
phism; that B is G-invariant means

B(gv, gw) = B(v,w), Vg e G, Yo,weV

Theorem 26.1. An irreducible representation V' of a fi-
nite group G admits a nondegenerate G-invariant sym-
metric bilinear form iff V is a real representation.

Proof. We begin with the following claim:

Lemma 26.2. B is G-invariant iff ap is a G-module
homomorphism.

Proof. To be a G-module homomorphism, by the defini-
tion of the dual representation, ap must satisfy

1

ap(gv) =g~ lap(v)

1

ap(gv) and g~ tap(v) are respectively maps

1

w — B(gv,w) w+— B(v, g w)

Clearly, these are equal iff B is G-invariant.
Note that

Hom(V,V*) =V* @ V* = Sym? V* @ A2 V*

so every bilinear form is a sum of a symmetric bilinear
form with a skew-symmetric bilinear form. Since V is ir-
reducible, this means that B must either be symmetric or
skew-symmetric. We then have have one of the following
three cases:

1. V 22 V* so there does not exist any nondegenerate
G-invariant bilinear form on V'
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2. V 2 V* through a nondegenerate G-invariant sym-
metric bilinear form

3. V =2 V* through a nondegenerate G-invariant skew-
symmetric bilinear form
We also know that
1

G|

S i)

geqG

dim(Homg (V, V™))

If the character is real, then this dimension must be

nonzero because each summand Yy (g)2 = xv(g)? will
be positive. Hence, a real character implies that we are
in either case 2 or case 3. Meanwhile, a complex character
means we will be in case 1.

Our theorem then reduces to the following lemma:

Lemma 26.3. V is real iff we have case 2.

Proof. First suppose that V is real. This direction is easy.
We have V = V) ®g C, so we can find a positive definite
symmetric bilinear form By on V[ and make it G-invariant
by averaging. We then simply extend this by linearity to
a form B on V.

Now consider the reverse direction. Suppose we have a
nondegenerate G-invariant symmetric bilinear form B on
V. Let H be any positive definite G-invariant Hermitian
form. As with B, this yields a map

ag:V —V*
v— H(v,")
Note, however, that unlike ag which is linear, the map

ay is conjugate linear.
Take the composition

-1
oV 2By Sy

which is an automorphism of V. Now consider ¢? : V —
V', which is a complex linear G-module homomorphism.
By Schur’s lemma,

©* =\

Moreover, we can see by our construction that, Vv, w € V,
o satisfies

So for 2, we have

H(p?(v),w) = H (v, *(w))
H(M,w) = H(v, \w)

Then A = X and hence A is real (and positive).

Multiplying B by a scalar, we can assume A = 1. Then
¢ : V — V is a real linear map, but ©? = I. Hence, it
has has eigenvalues 1 or —1 So we can decompose

V=vVteVv-

where V71 is the ¢?-eigenspace of eigenvalue 1, and V ~ is
that of eigenvalue —1. Note that v € VT means p(v) = v,
SO

p(iv) = —ip(v)

Then we have iVt = V~, and therefore we can write
V =VT ®rC, as desired.

We have actually proven a stronger theorem, which
we state as:

Theorem 26.4. An irreducible representation V. of G is
one and one of the following:

1. Complex. xvy is not real, and V does not admit a
G-invariant nondegenerate bilinear form.

2. Real. V is a real representation, xv is real, and
V' admits a G-invariant nondegenerate symmetric
bilinear form.

Quaternionic. V is a real representation, xv s real,
and V' admits a G-invariant nondegenerate skew-
symmetric bilinear form.

Note that unlike over the complex numbers, when we
work over the real numbers, we can’t easily determine the
number of representations. About all we can state in gen-
eral is that the complex representations come in cojugate
pairs. |

Lecture 27 — 4/2/12

Definition 27.1. A module M over a ringﬂ R is an
abelian group with a scalar multiplication map

RxM—R
(r,x) — ra

satisfying the usual axioms Vr,s € R, Vx,y € M,
o r(sx)=(rs)z

r==z

o (r+s)x=rz+ sz

e r(x+y)=rx+ry

Example.

8 Any ring R we consider will be commutative with identity unless otherwise specified.
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1. R is a module over R, r - s = rs.
2. The product

R" ={(z1,...,2,) : x; € R}

is a module given by the rule

r(xy,...,xn) = (rey, ..., 12,)

A module of this form is called a free module.

Definition 27.2. A submodule N C M over R is a sub-
group closed under scalar multiplication.

RxM-—M
U U
RxN-—N
Definition 27.3. If N C M is a submodule, the quotient

module M/N is the quotient group together with scalar
multiplication rule

rT =T

Observation 27.4. The submodules of the module M =
R are the ideals in R.

Definition 27.5. An R-module homomorphism ¢
M — N is a group homomorphism that commutes with
scalar multiplication

p(re) = re(x)

Observation 27.6. The kernel ker(y) is a submodule of
M, and likewise the image im(¢p) is a submodule of N.

Definition 27.7. Let M, N be R-modules. The direct
sum of modules is given by

M®N ={(z,y): 2 € M,y e N}
with scalar multiplication given by
r(z,y) = (rz, ry)

Definition 27.8. Let M, N be R-modules. The tensor
product of modules is a R-module M ® N with an asso-
ciated bilinear map

p:M&N —M®N
(r,y) — @y

such that every bilinear map ¥ : M x N — P for an
R-module P factors uniquely through ¢:

M x N P

N A

M®N

where « is an R-module homomorphism.

Note that for free modules, we have
Rm D Rn — R7n+n
R™"® R"=R™

Definition 27.9. Let M be an R-module, z1,...
M. We have a map ¢ : R" — M given by

, Ty €

(a1y...,ap) — a1x1 + -+ + apxy,

We say that z1,...,x, are generators of M if ¢ is sur-
jective. We say M is finitely-generated if there exists a
finite set of generators.

Example. Let us consider some modules over Z.
1. Z, Z', and the algebraic integers are all Z-modules.

2. Let M be any Z-module. Then

That is, the module structure is determined by the
group structure. We thus get a bijection between
abelian groups and Z-modules.

3. 27, C Z is a submodule of Z; moreover,
27. =2 7.
as Z-modules, since we have
7 =5 27
m—> 2m
We get Z/2 as a the quotient module Z/2Z.

4. We claim that Z/2 ® Z/3 = (0). For we have

20l®1)=2®1=0
31e1)=1®3=0
Then
1®1=31®1)-2(1®1)=0

Note that this situation could never occur in a vec-
tor space.

Definition 27.10. Let S be any set.
module generated by S is given by

Then the free

RS:{a181+~~~+ansn:aieR,siES}

In general, given z1,...,x, € M, we say they generate
M if
Rzt s M
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Lecture 28 — 4/4/12
Definition 28.1. Let R be a ring. Define
M, (R) = {n x n matrices (a;;) : a;; € R}
= Hom(R", R"™)
~ R"

Let GL,,(R) C M,(R) be the subset of invertible matri-
ces; that is,

GL,.(R) = {A € M,(R): 3B € M, (R), AB = I,,}
= Aut(R")

Definition 28.2. Let A € M,,(R) with entries (a;;). The
determinant of the matrix A is given by

det A=Y sgn(0) - a1,0(1) ** Gn.o(n)
ocES,

Observe that
det(AB) = det(A) - det(B)

Theorem 28.3. A € M,(R) is an isomorphism (i.e.,
invertible) iff det A is a unit in R.

Proof. First, suppose A is invertible. Then AA™! = I,,,
so we have
det(A) -det(A™1) =1

from which it follows that det A is a unit.
Now let cof(A) be the matrix of cofactors of A. We
know that
A-cof(A) =det(A) T

since det A is a unit, it has an inverse b € R, and hence
b - cof(A) is our desired inverse to A. [ |

We will denote the basis of R™ by {e1,...,e,}, where

ei=(0,...,1,...,0)
N——

Recall that

Definition 28.4. We say that vy,...,vx € M generate a
module M if every v € M is a linear combination of the
v;. Equivalently, the v; generate M if the map

p:RF — M
e; — U;

is surjective. We say the v; are linearly independent if

Zaivi:() — ai:O,Vi

or equivalently, if ¢ is injective. A linearly independent
generating set is a basis for M.

40

Observation 28.5. Note that modules exhibit patholog-
ical behavior as compared to vector spaces.

1. Not every module has a basis; for instance, Z/n as
a Z-module.

2. Even if a module M has a basis, (e.g., a free mod-
ule M = R™), it is not the case that every linearly
independent set can be extended to a basis. For
instance, take M = 7Z as a Z-module; the vector
v1 = 2 cannot be made a part of a basis. That is,
we have a Z-module homomorphism

727

that is injective without being surjective.
Similarly, if M = Z x Z, the vectors v; = (1,1),
vy = (1,—1) are independent, but cannot be ex-
tended to a basis.

3. It is also not the case that every generating set con-
tains a basis. For instance, v; = 2 and vy = 3
generate M = 7Z but do not contain a basis.

These pathologies make it impossible for modules to have
a well-defined notion of dimension.

In general, a module M is free iff it has a basis (not
necessarily a finite one).

Definition 28.6. If a module M has a basis vy, ...
(i.e., M = R™), we say that n is the rank of M.

avn

Note that a module can have rank 0 without being
the zero module (for instance, in Z/n).

Lemma 28.7. If a module M has a basis, then any two
bases of M have the same cardinality. It follows also that
if n #m, then R™ 2 R™.

Let M be a finitely-generated free module with basis

v1, ...,V Then we have a natural isomorphism M = R*
given by
‘RF— M
p:
e; — U;
If vi,..., v}, is another basis, we can write

v; = E i5V;

for some a;; € R. Then we have

RF 2 s M

l

RF 2 5 M
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where P = (a;;) is called the change of basis matrix.
Now we can identify

Hom(R"™,R™) = Mpxn(R)

For suppose M and N are free modules with ranks m and
n respectively, ¢ : N — M an R-module homomorphism.
Let us choose respective bases vy, ..., v, and w1, ..., w,.
Then we get an m x n matrix

R" = N

| b

R™ == M
which gives us Hom (N, M) = My, xn(R).

Definition 28.8. The cokernel of an R-module homo-
morphism ¢ : M — N is defined as

coker p = N/im ¢

We would like now to determine the kernel and coker-
nel of a homomorphism ¢ : R™ — R™. The issue is that,
while the kernel is again a free module (as we will show),
the cokernel need not be. For instance,

1 2 3
4 5 6|:72° —7°
7 89

Lecture 29 — 4/6/12

Let V and W be free modules with bases v1,...v, and
Wy, ..., Wy,. Wecan express an R-module homomorphism
¢ :V — W as a matrix A = (a;;) with

0
ai1 ain ai,j
A’Uj = 1 =
0
am,1 Am,n am,j

That is, we have

p(v;) =Y aijw;

Now suppose that we choose different bases {v}} and {wy}
for V and W. Then in terms of these bases, ¢ corresponds
to the matrix

o~ QAP

where P is the change of basis matrix for {v;} — {v}}
and @ is likewise for {w;} and {w!}.

41

We now pose the following question: given a homo-
morphism ¢, how can we find bases that make this ma-
trix as simple as possible? Equivalently, given a matrix,
can we find @ € GL,,(R) and P € GL,(R) such that
Q 'AP has a particularly simple form? Were V and W
vector spaces, we would have such simple matrix forms;
however, for modules, in general, the answer here is no.
In the case of R = 7Z, however, we have a nicer picture:

Theorem 29.1. Let V and W be free modules over Z,
p:V = W a Z-module homomorphism. Then there ex-
ist bases {v;}}_y for V and {w;}]2; for W such that the
matrix representation A of p is the block matrix

(i)

dq

where D has the form

da

such that Vi < k,d; |d;41.

Proof. For every m xn matrix A, we want () and P such
that Q! AP has the desired form. We will construct @
and P using a set of elementary matrices (analogous to
those from linear algebra). These have the form

1

where ¢ € Z is in the i, j-th place; this adds the ¢th col-
umn of A scaled by ¢ to the jth column (via multiplication
on the right);
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which is the identity matrix with the ith and jth columns
swapped; this interchanges columns ¢ and j of A; and fi-
nally

1

which negates the ith column (note that unlike in a field,
we cannot scale by arbitrary constants, since only +1 are
units; other constants would yield an uninvertible deter-
minant). Note that we have analogous row operations
resulting from left-multiplication.

First, want to arrive at a matrix which has the form

where d divides every entry of M. We can carry out the
Euclidean algorithm via our elementary row operations on
any two row headers to make one of them the ged of the
two. Therefore, we can arrive at a matrix with a1 1|a;1
for all 4 (that is, aq,1 divides all the row headers). We can
then subtract a multiple of the first row from every other
row to arrive at a matrix of the form

If a;,; does not divide all column headers, we can make
ay,1 the ged of all the column headers using column op-
erations. Of course, this undoes all the work we have
performed on the row headers, and after zeroing out the
column headers, we must repeat the (very inefficient) al-
gorithm from the beginning. Since a;,; either gets strictly
smaller or divides all headers at the beginning of each rep-
etition of the algorithm, the algorithm terminates.

This is almost what we want; we still want the sub-
matrix M to contain only entries which are multiples of
ay,1. Suppose M has an entry a;; which a;; does not
divide. We can use row or column operations to bring
a; ; to the first column or row (recall that all the headers
are 0). By repeating our algorithm, since a; ; must get
smaller each time (or becomes equal to 1), this process
eventually stops with our desired matrix.

Recursing on the submatrix M completes our
proof. [ |

We have shown that for Z-modules V' and W and any
homomorphism ¢ : V' — W, we can represent ¢, for some
choices of bases, by

0 dg,
0 0

Note that A takes e; — dje; for ¢ < k and e; — 0 for
i > k. Thus, we have

ker(p) = R"* and im(yp) = R
Specifically, the image of ¢ is spanned by vectors d,;w} for
i < k (where {w;} € W is the changed basis) Combined,
these observations give us:

Corollary 29.2. If ¢ : V. — W is a homomorphism of
free Z-modules, then ker(p) and im(p) are free. The cok-
ernel is

coker(p) =Z/d1 ® --- ®L/dy ® Z™*

Lemma 29.3. If W C Z™ is any submodule, then W is
free.

Proof. We will assume for now (and prove later) that W
is finitely generated. So suppose that wq, ..., w, are gen-
erators of W C Z™. This gives us a map Z™ — Z™ which
sends the ith basis vector to a generator w;. The image
of this map is W, and hence W is free as desired. ]

Corollary 29.4. Any finitely-generated abelian group G
is of the form
G=72"®Z/d1®---®Z/dy di|diy1,Vi

Proof. Equivalently, we know that G is a finitely-
generated Z-module. Choosing a set of generators
V1, ..., Um, We get a map Z™ —» G sending the e; — v;.
The kernel, being free, is isomorphic to some Z". Hence,
G is the cokernel of the inclusion Z" — Z™, which yields
our desired result. |

Lecture 30 — 4/9/12

We return briefly to a claim we made in a previous lec-
ture, that over an arbitrary ring R, matrices A, B € M, R
satisfy

det(A) - det(B) = det(AB)

42
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Let us begin by replacing these matrices with variable
matrices X = (z;;) and Y = (yx;). What we wish to do
is prove that the identity

det(X) - det(Y) = det(XY)

holds; we can then substitute elements of any ring R for
the entries of X and Y.

We define this substitution relative to Z[{x;;}, {yxi}],
the polynomial ring over the integers in 2n? variables.
There is a unique homomorphism Z — R for any ring
R, which yields, given some matrices A, B € M, R, the
substitution homomorphism

ZHzij} Aym] — R

sending x;; — a;; and yg; — by

But since the determinant function respects ring ho-
momorphism, if our identity holds in Z, it holds in any
ring R. Now consider the inclusion

Zl{zij}s {yki}] € Cl{wiz}, {yw}]

and the polynomial
f(xij, yij) = det(X) - det(Y') — det(XY)

We already know that, in C, the polynomial function f
satisfies

f(x1]7ylj) = Oa
But then f = 0 as a polynomial over C, and hence also
as a polynomial over Z.

Vi, yi; € C

Observation 30.1. Recall now our corollary, that any
finitely-generated abelian group G is of the form
G=Z7'®Z/d @ - - ®ZL/dy d;|diy1, Vi

It is also true for this decomposition that the a and d; are
all unique. Note that

a= dim@(G ®z Q)

Since, if a € G, we have d;a = 0, and so

1
a®l=dia® — =0
d;

Observation 30.2. Note also that our proof of the di-
agonalization of matrices in Z applies equally well to any
Euclidean domain. That is, for any Euclidean domain R,
any matrix in M, R can be diagonalized as

dy

dy,

\ 10
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In non-Euclidean domains, however, this does not hold.
In the case of R = F[z,y], for example, R contains the
ideal I = (x,y), which is not a free module. Then the map
¢ : R —» R/(z,y) cannot be diagonalized as a matrix,
for then I = ker(y) would be free.

Definition 30.3. Let R be a ring, p : R — R™ a ho-
momorphism of finitely-generated free R-modules. Given
some choice of basis for R™ and R™, we can represent ¢
by a matrix

ai,1 ain

A =
Gm,1 Am,n
Consider the module
M = coker(p) = R™/im(A)

with quotient map

YR — M
€; — U;

for the corresponding residues v; € M. Clearly, M is
generated by the v;; moreover, each column of A gives a

relation

a1,;01 + A, jUm = 0

Conversely, every linear relation among the v; is a linear
combination of these. So M is fully determined by the v;
along with these relations; we call A the presentation of
M.

To obtain a presentation for our module M, we ex-
plicitly defined it as the cokernel of a map between free
modules. Suppose that we instead took any arbitrary R-
module M—what conditions must we impose to obtain a
presentation?

Obviously, we must restrict our attention to finitely-
generated modules. In this case, we can choose genera-
tors vy, ..., v, for M; this gives us a map ¢ : R™ —» M.
Then the relations on M are precisely those elements of
the kernel ker(y). However, if we want to obtain a pre-
sentation, this kernel must be finitely generated as well.

If it is, we can choose generators uy, . . . , u, for ker(¢);
this gives us a map ¢ : R — R™ with coker(yp) = M.
Note that the ker(¢) itself need not be free, but it must
be finitely generated for us to determine R"™.

How, then, can we tell if ker(¢) is finitely generated?
This is a hard question to answer, since the map 1 already
depends on the choice of generators for M. Instead, we
impose further restrictions on the base ring R.

Definition 30.4. A ring R is Noetherian if any ideal
I C R is finitely-generated.
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Proposition 30.5. Let R be a Noetherian ring, M a
finitely-generated R module. Then any submodule of M
is again finitely-generated.

Lecture 31 — 4/11/12

Theorem 31.1. Let R be a ring, M a module over R.
Then the following are equivalent:

1. Fvery submodule of M is finitely-generated.

2. Any infinite sequence
MicMyC---CM

of submodules of M eventually stabilizes; that is,
dng : Vn,m > ng, M, = M,,. This second condi-
tion is called the ascending chain condition.

Definition 31.2. A Noetherian module is an R-module
satisfying the above condition.

Proof. The reverse direction is easy. Suppose N C M is
not finitely-generated. Then we claim that we can con-
struct an infinite, non-stabilizing sequence

My G My G M3 & -

Start with any v; € N, and take My = (v1). Then choose
vy € N — My, and take My = (v3). Because N is not
finitely-generated, we can always find such an element v;;
we achieve our desired sequence by induction.

Suppose now that we have an infinite sequence M; C
My C---C M. Set

N:UMCM

This is a submodule of M, and hence is finitely-generated.
Choose generators vy, ...,v; for M. For each i, there
must exist some index n; such that Vn > n;, M, > v;.
Then there is some module M,, in the chain (with
ng = max{n;}) such that every M; O M,, in the chain
contains all the v;. But then we have M; = N for every
i > ng. Thus, the chain stabilizies, which completes our
proof. |

Theorem 31.3. If R is a Noetherian ring, then every
finitely-generated R-module M is Noetherian.

Proof. We will start with the case M = R"™ for some
n. Our base case for n = 1 is true by assumption; we
proceed by induction. Let N C M be any submodule; we
want to show that N is finitely-generated. Consider the
projection map

¢:R"— R"!

(1, Tp1,Tp) —> (1, -+, Tp—1)
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By our induction hypothesis, the image module p(N) C
R™ 1 is finitely-generated. Choose generators o1, ..., Uy,
and choose also representatives v; € N such that ¢(v;) =
;. Then, Vv € N, we can write

p(v) = Z CiUi,

Consider the corresponding linear combination of the v;;
we can see that

¢ €R

v— Z ¢iv; € ker(p)

But ker(¢) C R. Since R is Noetherian, ker(yp) is finitely-
generated; choose generators wi,...,w;. Then we can
write any element N as a linear combination of the v;
and the w;.

Now let M be any arbitrary finitely-generated R-
module, not necessarily free. Let ¢ : R — M be
the canonical map taking e; to some n generators of
M, and let N C M be any submodule. By the above,
@ 1(N) C R" is finitely-generated; choose generators
V1, .. Then N is generated by ¢(v1),...,0(vm),
which completes our proof. |

s Umn -

Note that “finitely-generated” has a different mean-
ing depending on whether we are speaking about rings or
modules. For instance, the ring

m;:{;fanneN}cQ

is finitely-generated over Z as a ring, but not as a module.
As a module, multiplication is only defined with respect
to the base ring Z, so no finite number of generators will
yield all the inverse powers of 2.

Lemma 31.4. Let R be a Noetherian ring. Then for any
ideal I C R, the quotient R/I is Noetherian.

Proof. Let ¢ : R — R/I be the quotient map. Let
J C R/I be any ideal in R/I. Then J = ¢~ 1(J) is an
ideal in R. By assumption, J is finitely-generated. Choos-
ing generators vy, ..., vy, we see that J is generated by

P(v1), -+ p(vk). |

Note that we can obtain presentations for any finitely-
generated module M over a Noetherian ring R. That is,
every R-module where R is Noetherian is the cokernel of
amap ¢ : R* — R™.

Theorem 31.5 (Hilbert Basis Theorem). Let R be a
Noetherian ring. Then the ring R[z1,...,x,] is Noethe-
Tian.
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Proof. Since we obtain R[x1,...,2,] by adjoining z, to
R[x1,...,xp—1], it suffices to prove the theorem for R[z].
Let I C R[x] be any ideal. For every f € R|x] of the form
f=apx™+--- + ag, with a,, # 0, we define

le(f) = an

This is notation for the leading coefficient of f.
Now consider the set

A={le(f): f e I} U{0}

We claim that A is an ideal in R. This is fairly easy to
see. Let o, € A, with a = le(f) and S = lc(g). Take
any ¢ € R; if ca # 0, then

= le(cf)

and hence A absorbs multiplication in R. To show
that A is closed under addition, suppose WLOG that
deg f > degg. Then we also have 3 = lc(zd°ef~degg . g),
and hence

o+ B = le(f +ates I~ . g)

(unless, of course, o + § = 0).

Since A C R, it is finitely-generated. So let us
choose generators aq,...,a for A along with polyno-
mials f1,...,fx € I with le(f;) = «;. Take n =

max{deg f;}. WLOG, we can assume the f; all have the
same degree by multiplying each f; by a”~des fi,
Now set

Po={f € R[z] : deg f <n}

This is a free module over R, isomorphic to R" 1 (it is,
however, clearly not a ring). Let also

P=PNnI={fel:degf<n}

This is a submodule of Py; hence, P is finitely-generated
as an R-module. Let us choose generators g1, ..., g; for
P. We claim now that {f;} U {g;} together generate I.
We prove this by induction on degree. Let f € I. If
deg f < n, then f € P and we are done; this is our base
case. Suppose deg f > n. We can write lc(f) as a linear

combination
le(f) = Z Ci0y

which corresponds to a linear combination of the f;.
Then, if we take

g=1Ff-> al

since deg g < deg f, by the induction hypothesis, g is ex-
pressible as a linear combination of the f; and g;, and
therefore so is f. |

degf nf
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Definition 31.6. We say that a ring R is
finitely-generated over a field K if K — R and if

Jvq,...,vr € R such that
Klzy,...,25) —™ R

by the evaluation homomorphism.

Corollary 31.7. Any finitely-generated ring over a field
or Z is Noetherian.

Lecture 32 — 4/13/12

Definition 32.1. A sequence of R-module homomor-
phisms
M, 2% M,_; 21 M, 4 — - — M; 25 M,

is called exact if

Vk <n, keryr_1=1impy

We say a sequence is a complex if
Vk<n, ¢r_100r=0

that is, if imp; C ker;_1. In this case, the quotients
(ker pr—1)/(im ¢y) are called the cohomology modules.

Definition 32.2. A short exact sequence is an exact se-
quence of the form

0O—M—N-—P—0

As a result M — N is an injection, and P = N/M.

Example. Let R = Z. Let M be a finitely-generated
Z-module; hence, we get a map v : Z™ — M onto M’s
generators. We know that ker(y)) = Z" for some n is free.
This yields a short exact sequence

0 —2"—7Z" — M-—0

Similarly, take R = F[t]. Any finitely-generated mod-
ule R-module M is the cokernel of some map
0— R" % R™ — M —0

Since F[t] is a Euclidean domain, we can obtain a diago-
nalized presentation
M~R*®R/(d)® R/(d2) & - & R/(dy,)

where d; € F[t] and Vi, d; |d;t1.
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Example. Let R = Fl[z,y] for some field F and let
M = R/(z,y) = F. Consider the quotient map

7w Flz,y] — F
f— f(0,0)

which has ker(w) = (z,y). (z,y) is generated by z and
y, so we have a natural map ¢ : R?> — (z,y) mapping
the standard basis onto the generators. Thus, we have an
exact sequence

R % (2,y) > R F
The kernel of ¢ is given by

ker(¢) = {(f,g) : of +yg = 0}

Since zf = —yg, y| [ and likewise x | g. We can write
f =yf" and g = z¢’. But then substituting, we get that
zyf' = —xyg’. If we set h = ¢/, then we have f = —yh
and g = xh, which means that

ker(¢) = {(—yh,zh)}

This gives a natural map ¢ : R — R? given by the matrix

_ (7Y
»=(2)
It is easy to see that ker(¢)) = 0, and hence we have an
exact sequence
0R5S RS RIS F—0

Now let R = F[z1,...,z,], M a finitely-generated R-
module. We know that there exists a surjection g :
My — M where My = R™°. Since My is Noetherian,
ker(yp) is finitely-generated. Choosing a set of m; gen-
erators of this kernel, we get

M, 25 My 2% M — 0
where M, = R™:.

Theorem 32.3 (Hilbert Syzygy Theorem). The process
described above terminates after at most r steps. In gen-
eral, this is called a free resolution of M.

Lecture 33 — 4/16/12

In general, if M is an R-module over a Noetherian ring
R, it can be realized as the cokernel of a homomorphism
of free modules. Moreover, M has a free resolution.

Example. Let R = Ft] for F a field. Consider the ma-

trix
= 2 —3t+1 t—2
T\ t-1)2  2-3t+2
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The R-module given by M = coker(A), that is, presented
by A, is generated by two elements v, w with

(t*=3t+ v+ (t—1)>w=0
(t—2)v+ (> —3t+2w=0

Unfortunately, this doesn’t give us much insight into the
module’s structure.
However, we can diagonalize A as

1 0
A= (0 t33t2+2t>

from which we have
M = coker(A) = F[t]/(t3 — 3t + 2t)

We can factor t3 — 3t% + 2t = t(t — 1)(t — 2), which means
we can further decompose

M = F[i]/(t) © F[i]/(t - 1) © F[t]/(t - 2)
Each of these direct summands is congruent to F.

Observation 33.1. Note that, in general for modules
over a Euclidean domain, we can arrange for the d; in the
diagonalization to be prime powers rather than dividing
one another in sequence. If R = F'[t], can require d; = f;"
where the f; € F[t] are irreducible. In the special case

F = C, can take each d; = (t — ¢;)%

We will now turn briefly to the study of modules in
relation to vector spaces and linear operators. Let V be
an n-dimensional vector space over F', T : V — V a lin-
ear map. We can give the group V the structure of an
F[t]-module by defining

t-v="Tv

Then we have f(t) - v = [f(T)Jv. Since V is finite-
dimensional, it is finitely-generated over F'[t].
In the case F' = C, we can decompose

VCH/(t—ca)™ & - dCt]/(t —cn)™

Each of the direct summands V; is a submodule of V' over
F[t] as well as a vector space invariant under 7.

Definition 33.2. A module which is generated by one
element is called cyclic.

In the case of F[t], modules of the form F[t]/(f) are
all cyclic.

Consider a single direct summand V := C[t]/(t — ¢),
which is also an a-dimensional vector space over C. We
can choose a basis 1,¢,t2,...,t*! for V. The linear map
T is defined by left-multiplication by t. For each basis vec-
tor v;, we simply have tv; = v;,1 except for v,_; = t¢7 1,
where we have

a—1

e = Z <a) Oy
(3

1=0
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Definition 33.3. With respect to the choice of basis
{1,t,#2,...,t*" 1}, the matrix for T
canonical form,

0 —ap
1 0 —ax
T— 1 —as
0 .
1 0 —Aan_—2
1 —0n-1

Alternatively, we can choose our basis {v;} to be
L,t —c (t —c)?,...,(t —c)* 1. Multiplication by t, or
equivalently, application of T, is given by

Vo — V1 + Cvg
V1 — V2 + cuy

Vg—2 F— Vg—1 + CUq—2
Vg—1 = CUq—1
Definition 33.4. With respect to the choice of basis

{L,t—c,(t—c)?, ..., (t—c)* 1}, the matrix for T is given
in Jordan normal form,

1 ¢
We are able to achieve the rational canonical form
for arbitrary fields F', in which case the coefficients in
the rightmost column will be in F. However, we cannot
achieve Jordan normal form for vector spaces over arbi-
trary F. Note also that R = Z[t] does not exhibit the

same behavior as R = F[t], so this discussion does not
hold.

Lecture 34 — 4/18/12

Theorem 34.1 (Bezout’s Theorem). Let f,g € Clz,y]
be relatively prime, and say m = deg(f), n = deg(g).

Define
I'={(z,y): g9(z,y) = f(z,y) =0}
Then #I' < mn.

Claim 34.2. Let f,g € C[t] of degrees m and n respec-
tively, with

f@) =amt™+---+ao

g(t) = bat™ + -+ bg

47

is given in rational

Then there exists a polynomial

P(ao,...,am,bo,...,bn)

such that P(a,b) =0 iff f and g have a common zero.

Proof. Note that f and g have a common zero iff
(f,9) = {af +bg:a,beC[t]} < C[t]

Let
Sk = {f € C[t] : deg(f) < k} = CF!

Consider the map

@ Snfl X Smfl — Sm+n71
(a,b) —> af +bg

If f and g have a common zero, then ¢ is not surjec-
tive. Suppose they do not have common zeros. Then if
af +bg = 0, every zero of f must also be a zero of b, and
likewise for g and a. Then a = b = 0, meaning that ¢ is
injective and hence an isomorphism.

Now choose a basis 1,t,t2,...,t™" "= for S,y 1,
(1,0), (t,0),..., (™= 0),(0,1),(0,t),..., (0,tm+n=1)
for S,,_1 X S;—1. We can define

P(ao, ..

s Doy -+ b)) = det(A)

where A is the matrix representing ¢ of the form

ao 0 bo O

ai ao
al bo
A=\g, * . a
Gm - a1 by

0 .a'mo.b.n

Then P(a,b) = 0 iff ¢ is nonisomorphic, which is the case
iff f and g have common zeros, as desired. |

Proof. (of Bezout’s Theorem) We can write

f(@,y) = am(2)y™ + - + ao(z)
9(x,y) = bn(x)y™ + -+ + bo(z)

For how many values of x is it the case that f and g have
common zeros? Consider our matrix A now where all the
entries are viewed as polynomials in . Then the set of
such that f(x,y) and g(x,y) have common zeros is just
the zeros of det(A). Then since deg(a;(z)) < m — 1 and
deg(b;j(z)) <n—1, we have deg(det(A4)) < mn. [ |
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Lecture 35 — 4/20/12

In the final lecture, we will revisit field theory by dis-
cussing the separability of fields.

Definition 35.1. Let F be a field, f € F[z] with
deg(f) = n. We say that f has distinct roots if f
has n distinct roots in its splitting field. Equivalently,
VF— K,a €K, (r —a)*{f € K[x].

Observation 35.2. Note that the property of having
distinct roots is independent of the ground field F'; that
is, for any extension F' — K, if f € F[z]| has distinct
roots, then f € KJz] does as well. Also, note that if f
has distinct roots and g| f, then g also has distinct roots.

Definition 35.3. We say a polynomial f € Fl[z] is
separable over F' if every irreducible factor of f € F[z]
has distinct roots.

Note that this definition, unlike the previous defini-
tion, is dependent on the ground field F. It is still the
case that if f € F[x] is separable, then f € K|x] is sepa-
rable, since f’s irreducibles can only decompose more in
the extension field K/F. However, the converse is not
true in general.

Example. Let F' = F,(¢), the field of rational functions
over Fp,. Let f = aP —t¢ € F[z]. This is irreducible by the
Eisenstein criterion; does it have distinct roots?

We claim it does not. Let K/F be any extension,
a € K aroot of f € K[z]. Then o =t in K. So in K[z],

fla)=ar —t
— P _ P
since I, = (z—a)?

So f is not separable.

Theorem 35.4. Let F be any field. If f € Flx] insep-
arable, then char(F) =p > 0 and #F = co.

Proof. Recall the derivative, defined for
f=a,z" 4+ -+ ag
as
' =na,z" 4+
We claim first that

Claim 35.5. f € F[x] has distinct roots iff f and f’ have
no common roots in any extension K/F.

+a;

Proof. Suppose that f(a) = f'(a) = 0 in K[z], for
a € K. Then f(z) = (x — a)g(z) for some g € K[z].
Then

fl(@) =g(x) + (z — a)g'(z)
by the product rule. Then if f/(a) = 0, we must have
g(a) =0, 50 (r —a)|g. Then (x — )?| f, a contradic-
tion.

48

Claim 35.6. If f € F[z] is irreducible and non-constant,
then f fails to have distinct roots iff f' =0 € F[z].

Proof. To say that f does not have distinct roots means
JK/F,a € K : (x—a)?|f. Then (z —a)| f’. Since f and
f’ have a common factor in K[x], but f is irreducible in
F[z], then f|f’ € F[z]. Sowe must have f' =0 € F[x].

Definition 35.7. Let F be a field, char(F) =p > 0. We
can define a field homomorphism given by

p: F—F
ar— aP
since (a+ B)P = aP + SP. We say that F' is perfect if ¢ is

an isomorphism (i.e., is surjective). We say that all fields
of characteristic zero are perfect.

In particular, note that if F'is finite, then F' is perfect.
Next, we claim that

Claim 35.8. If I is perfect, then every polynomial f €
F[z] is separable.

Proof. Suppose that 3f € F[z] inseparable. Then 3f €
F[z] irreducible but without distinct roots. Suppose first
that char(f) = 0. Then all nonconstant polynomials have
nonzero derivatives. By the previous claim, f must have
distinct roots.

Now suppose char(f) = p > 0. Since F is perfect, we
can write

f(x) = g(a?)
for some g = a,x™ + -+ + ag € Fx]. We can also choose
b; € F such that ¥ = a;. Then

f(z) = g(a¥)

so f is not irreducible, a contradiction.

This claim, along with the definition of perfect field,
yields our desired result. |

Definition 35.9. Let F' — K be a field extension.
a € K is separable over F' if its minimal irreducible
polynomial f € F[z] is separable. We say that K/F is

separable if every element o« € K is separable.

Definition 35.10. A field extension K/F is normal if
Vf € F[z] irreducible, f has a root in K iff f splits com-
pletely in K.

Theorem 35.11 (Fundamental Theorem of Galois The-
ory). K/F is Galois iff K/F is normal and separable.
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