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Lecture 1 — 1/23/12

Example (Fields).

1. Q, the rational numbers

2. Fp = Z/pZ ↪→ Fq, where q = pn

3. C(t), C(t1, . . . , tn), the complex function fields of
one or more variables (where addition and multipli-
cation are defined pointwise as usual)

While in group theory, we often studied a group by ex-
amining its various subgroups, our primary tool in field
theory will be to take a ground field F and to study its
extensions.

Definition 1.1. Let F be a field. A field extension of F
is given by a field K with

F �
�

// K

where F is included in K and is closed under K’s field
operations and inverse. We denote the field extension
K/F .

Definition 1.2. Two field extensions K/F and K ′/F of
a ground field F are isomorphic

K/F ∼= K ′/F

if ∃ϕ : K → K ′ such that we have the diagram

K
ϕ
// K ′

F
?�

OO

id // F
?�

OO

Definition 1.3. Let F ↪−→ K be a field extension. We
say that an element α ∈ K is algebraic over F if α satisfies
a polynomial equation in K

anα
n + an−1α

n−1 + · · ·+ a1a+ a0 = 0

where ai ∈ F . Dividing by an, we can assume the poly-
nomial to be monic. If α does not satisfy any such poly-
nomial, it is transcendental over F .

Note that whether or not an element α is algebraic
depends not only on the extension field K but also on
the ground field F . For example,

Example. Let K = C. Then πi is transcendental over
Q but is algebraic over R.

Recall that

F [X] = {anXn + · · ·+ a1X + a0 : ai ∈ F}

is the polynomial ring with coefficients in F .

Claim 1.4. Let F ↪−→ K be a field extension, α ∈ K.
Consider the evaluation ring homomorphism given by

ϕ : F [X] −→ K

X 7−→ α

Then α is transcendental over F iff ϕ is injective.

Proof. ϕ is injective iff kerϕ = {0}; this means that α
does not satisfy any polynomials with coefficients in F ,
and hence is transcendental. �

Recall from ring theory that an ideal is any subgroup
of a ring that is closed under multiplication. We denote
an ideal generated by some element x by (x).

Definition 1.5. Let F ↪−→ K be a field extension, α ∈ K
algebraic over F . Since F [X] is a PID1, we have

kerϕ = (f)

for some f ∈ F [X] (we assume that f is monic). We call
f the irreducible polynomial satisfied by α/F . We also
define

degF α = deg f

The degree of an algebraic element is also dependent
on the ground field; for example,

Example. Let K = C and α =
√
i = eπi/4. In Q, α

satisfies the polynomial X4 + 1, and we have

degQ α = 4

In Q(i) (the rationals with i adjoined), α satisfies the
polynomial X2 − i, and we have

degQ(i) α = 2

Definition 1.6. Let F ↪−→ K be a field extension,
α ∈ K. Recall our evaluation map ϕ : F [X] → K. We
denote

F [α] = imϕ = {β ∈ K : β = anα
n + · · ·+ a0, ai ∈ F}

which is the smallest subring in K that contains both F
and α. Similarly, let

F (α)

denote the smallest subfield of K containing F and α.
We call these ring adjunction and field adjunction respec-
tively.

1Principal ideal domain; that is, a ring in which all ideals are generated by a single element. Recall that all fields and all rings F [X]
are PIDs.

1



Math 123—Algebra II Max Wang

Observation 1.7. If α is transcendental over F , then we
have

F [α] ∼= F [X]

and

F (α) ∼= F (X)

where F (X) denotes the field of rational functions with
coefficients in F .

If α is algebraic over F , kerϕ = (f) is nonzero. Then
we have

F [α] = F (α) ∼= F [X]/(f)

This makes F (α) a finite-dimensional vector space over
F with a basis of

1, α, α2, . . . , αn−1

where n = degF α, since these powers of α are those ze-
roed by the irreducible polynomial.

Definition 1.8. We say that a field extension F ↪−→ K
is algebraic over F if every α ∈ K is algebraic over F . We
say F ↪−→ K is finite over F if K is a finite-dimensional
F -vector space. Note that a field extension that is finite
over its ground field is also algebraic over that ground
field; however, the converse is not true in general.

Let F ↪−→ K be a field extension, α, β ∈ K. We will
ask three questions about the subfields of K generated by
α and β.

1. When is F (α) = F (β)? This is true, for instance,
if β = α + 1. We can also consider less trivial ex-
amples; for instance, taking F = Q, K = C, α the
root of the polynomial X3−X + 1, and β = α2, we
also have Q(α) = Q(β) (although this is far from
immediately clear).

2. When is F (α) ∼= F (β) as extensions of F?

3. When is F (α) ∼= F (β) as extensions of F via an
isomorphism α↔ β? If α and β are both transcen-
dental, the the isomorphism is obvious. If they are
both algebraic, then the isomorphism holds iff the
monic polynomials satisfied by α and β over F are
equal, yielding

F (α) ∼= F [X]/(f) ∼= F (β)

Lecture 2 — 1/25/12

Definition 2.1. Let F be a field. There exists a canoni-
cal ring homomorphism

ϕ : Z −→ F

The characteristic of F is defined by

char(F ) =

{
0 kerϕ = {0}
p kerϕ = (p)

Note that the map ϕ is unique for each field F and hence
commutes with inclusion; so, all field extensions of a given
ground field share the ground field’s characteristic.

Definition 2.2. If F ↪−→ K is a finite field extension,
then the degree of the extension is the dimension of K as
an F -vector space, denoted

deg(K/F ) = [K : F ]

Note. If we have

F ↪−→ K ↪−→ K ′

then
[K ′ : F ] ≥ [K : F ]

and also
[K ′ : F ] ≥ [K ′ : K]

Claim 2.3. [K : F ] = 1 ⇐⇒ K = F .

Proof. Immediate. �

Proposition 2.4. Let F ↪−→ K be a field extension with
[K : F ] = 2. If char(F ) 6= 2, then

K = F (δ), δ2 ∈ F

Proof. Choose any α ∈ K − F . Then since [K : F ] = 2,
α and 1 are linearly independent. Then 1, α, α2 are de-
pendent, and hence ∃a0, a1, a2 such that

a2α
2 + a1α+ a0

We know a2 6= 0, so dividing by a2,

α2 + b1α+ b0 = 0

Since char(F ) 6= 2, we have an element 2−1, so we can set

δ = α+
b1
2

Then we have

δ2 + (b0 −
b21
4

) = 0

where b0 − b21
4 ∈ F . Hence, K = F (δ) with δ2 ∈ F , as

desired. �

Note that we could abolish the restriction on charac-
teristic by demanding only that some quadratic polyno-
mial of δ to be in F .

Proposition 2.5. Let F ↪−→ K ↪−→ L where L/F is
finite. Then

[L : F ] = [L : K][K : F ]

2
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Proof. Choose a basis α1, . . . , αn for L/K and another
basis β1, . . . , βm for K/F . We claim that the pairwise
products αiβj form a basis for L/F .

First, we will show these αiβj span. Let γ ∈ L. We
can write

γ = a1α1 + · · ·+ anαn

where ai ∈ K. But then we can write

ai = bi1β1 + · · ·+ bimβm

where bij ∈ F . Then we have

γ =
∑

bij(αiβj)

Next, we show independence. Suppose we have∑
bij(αiβj) = 0

Defining ai as above, we get∑
aiαi = 0

But by the independence of the αi in L/K, we have∑
j

bijβj = 0

for every i, which yields bij = 0,∀i, j by the independence
of the βj in K/F . This completes the proof. �

Corollary 2.6. Let F ↪−→ K be a finite field extension.
Then ∀α ∈ K,

degF α | [K : F ]

because we can write

F ↪−→ F (α) ↪−→ K

Theorem 2.7. Let F ↪−→ K be a field extension, and let
L ⊆ K be the subset of elements that are algebraic over
F . Then L is a subfield of K.

Proof. Take α, β ∈ L. We have the sequence of exten-
sions

F ↪−→ F (α) ↪−→ F (α, β)

It is obvious that if β/F is algebraic, then so is β/F (α).
Then F (α, β) is a finite extension over F , and hence every
γ ∈ F (α, β) is algebraic over F . �

Example. Let F = Q, K = C. Set L = Q, the algebraic
closure of Q. We can factor polynomials completely in
this field.

We would like to know if the algebraic closure of a field
always exists. That is, given a field F , does there exist
an extension F ↪−→ K such that any polynomial with co-
efficients in K factors completely in K (or, equivalently,
has a root in K).

Lecture 3 — 1/27/12

Example. Let α be the real cube root of 2, and let
ω = e2πi/3. Define

α1 = α α2 = αω α3 = αω2

These are the roots of the polynomial x3 − 2. Note that
this polynomial is irreducible over Q, so we have

[Q(αi) : Q] = 3

From the point of view of algebra, these three roots are
indistinguishable (i.e., the field extensions made by ad-
joining αi are all isomorphic).

We want to distinguish between our three extensions
Q(αi) by considering them as subfields of

Q(α1, α2, α3) = Q(α, ω)

One way to make such a distinction would be to note
that Q(α1) ⊂ R whereas Q(α2),Q(α3) 6⊂ R. However, we
would like to obtain this knowledge without relying on
the existence of R or C.

ω satisfies the irreducible polynomial

x3 − 1

x− 1
= x2 + x+ 1 = 0

which yields

[Q(ω) : Q] = 2

A field extension of degree 3 cannot contain an element
of degree 2, so ∀i, ω /∈ Q(αi). Thus, we learn that

[Q(α, ω) : Q] = 6

and also that

[Q(α, ω) : Q(αi)] = 2

and

[Q(α, ω) : Q(ω)] = 3

Finally, we can also conclude that the Q(αi) must be dis-
tinct fields because ω is their ratio, and ω is not in any
Q(αi).

We end up with the following picture:

Q

Q(ω) Q(α1) Q(α2) Q(α3)

Q(α, ω)

2
3 3

3

3
2 2

2

3
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Note that, although we set out to obtain our results
without relying on the complex numbers, we still required
knowledge of C in order to construct our field extensions.

Example. Let us consider Q(
√

2, i)/Q. We know that
Q(
√

2) and Q(i) have degree 2 as extensions of Q (their
generators satisfy quadratic polynomials). Thus, we know
that Q(

√
2, i)/Q has degree either 2 or 4. Again, this

question reduces to whether the two single-adjunction
fields are equal.

We know any number α ∈ Q(i) can be written α =
a+ bi with a, b ∈ Q. Thus, we would have Q(

√
2) = Q(i)

as field extensions over Q if we had

α2 = a2 − b2 + 2abi
?
= 2

However, this equation cannot be satisfied; hence, the
fields are distinct, and we have

[Q(
√

2, i) : Q] = 4

Note that there is a third extension, Q(i
√

2). This is
again a quadratic extension (has degree 2) and this is dis-
tinct for the same reason the other two are distinct. We
assert without proof that these are all the intermediate
extensions.

Example. We can replace i with
√

3 in the above exam-
ple to yield identical results. Let us now attempt to find
the irreducible polynomial over Q satisfied by

α :=
√

2 +
√

3

(We know that α is algebraic because it is an element of
a finite extension.) Note first that 1,

√
2 are a basis for

Q(
√

2)/Q, 1,
√

3 are a basis for Q(
√

3)/Q, and hence

1,
√

2,
√

3,
√

6

form a basis for Q(
√

2,
√

3)/Q.
We will solve this problem using two different ap-

proaches. First, let us write out some of the powers of
α:

α0 = 1

α1 =
√

2 +
√

3

α2 = 5 + 2
√

6

α4 = 49 + 20
√

6

Note that 1, α2, α4 are linearly dependent, and in partic-
ular, we find that α satisfies

x4 − 10x2 + 1

We could check irreducibility by checking that α is not
in any of the three intermediate extensions (generated by

√
2,
√

3, and
√

6). Alternatively, since 1, α, α2 are inde-
pendent, we know that the desired irreducible polynomial
is not quadratic (and we know it cannot be cubic because
our extensions have even degrees).

We could, instead, denote f(x) as the irreducible poly-
nomial over Q satisfied by α, and consider the other roots
of f beyond

√
2 +
√

3. Note that algebra can’t tell the
difference between

√
2 and −

√
2; they are both just num-

bers satisfying x2 − 1. A similar statement holds for
√

3.
We might guess, then, that the other roots are

√
2−
√

3,
−
√

2 +
√

3, and −
√

2−
√

3. So we simply try

(x−
√

2−
√

3)(x−
√

2 +
√

3)

(x+
√

2−
√

3)(x+
√

2 +
√

3)

= ((x−
√

2)2 − 3)((x+
√

2)2 − 3)

= (x2 − 1)2 − 8x2

= x4 − 10x2 + 1

Note that this doesn’t tell us that our polynomial is irre-
ducible (but in fact it is).

Consider our picture for Q(
√

2,
√

3):

Q

Q(
√

2) Q(
√

3) Q(
√

6)

Q(
√

2,
√

3)

2 2 2

2 2 2

If we consider our field extensions as vector spaces, we
find that Q(

√
2,
√

3) is a four-space, and the intermediate
extensions are all two-planes; therefore, in a very strong
sense, most elements of Q(

√
2,
√

3) must be single gener-
ators of that field.

Lecture 4 — 1/30/12

Definition 4.1. Let us formalize the notion of
constructions with straightedge and compass, which al-
lows us to bridge our algebra with planar geometry. In
making such constructions, we begin with a pair of points
p, q ∈ R2. We then define two basic constructions:

1. Draw the line Lp,q = pq.

2. Draw the circle Cp(q) with center at p passing
through q.

Given two lines L1, L2, we can find their point of intersec-
tion; given a line L and a conic C or two conics C1, C2, we
can find their two points of intersection. The intersections
of these lines and conics are called constructible.

4



Math 123—Algebra II Max Wang

Construction 4.2. Begin with p, q ∈ R2. We construct
the point r ∈ Lp,q equidistant to both p and q as follows:

1. Draw the circle Cp(q) through q about p.

2. Draw the circle Cq(p) through p about q.

3. Draw the line L between the two intersection points
of these circles.

4. r is the intersection L ∩ Lp,q

Construction 4.3. Begin with a line L and a point
p /∈ L. We construct a perpendicular to L through p
as follows:

1. Draw any circle about p intersecting L at two points
q and q′.

2. Find the midpoint r between q and q′ on L.

3. Draw the line Lp,r; this is our desired perpendicu-
lar.

Construction 4.4. Begin with a line L and a point
p ∈ L. We construct a perpendicular to L through p
as follows:

1. Draw any circle Cp around p, intersecting L at q
and r.

2. Draw the circle Cq(r) and the circle Cr(q).

3. Connect the intersections of these two circles via a
line L′; this line passes through the midpoint p and
is perpendicular to L.

Construction 4.5. Begin with a line L and a point
p /∈ L. We construct a line parallel to L as follows:

1. Draw the line L⊥ perpendicular to L through p.

2. Draw the line L′ perpendicular to L⊥ through p;
this is parallel, as desired.

Construction 4.6. Begin with a pair of points p, q and
a line L with a point r ∈ L. We construct a line segment
in L with one endpoint r with length equal to d(p, q) as
follows:

1. Draw the circle Cp(q).

2. Draw the line Lp,r.

3. Draw the line L′ through p parallel to L; let s be
the point L′ ∩ Cp(q).

4. Draw the line L′′ parallel to Lp,r through s.

5. Let r′ be the intersection L′′ ∩ L; the segment r, r′

has d(r, r′) = d(p, q).

Definition 4.7. Begin with the two points (0, 0), (1, 0) ∈
R2. We call a point (a, b) constructible if we can construct
it starting with our two points using our various construc-
tions. Similarly, we say a point a ∈ R is constructible
if (a, 0) is constructible. Finally, an angle θ ∈ [0, 2π)
is constructible if we can construct two lines L,L′ with
∠(L,L′) = θ. Note that θ is constructible if sin θ and
cos θ are constructible.

Let p, q ∈ K2 ⊂ R2 where K is some subfield of R.
Then Lp,q is defined by a linear equation with coefficients
in K. Similarly, the circle Cp(q) is defined by a quadratic
polynomial in K.

If we have two lines L,L′ defined by linear equations
with coefficients in K, their point of intersection L ∩ L′
is in K2. If instead we have a line L and a circle C de-
fined by equations with coefficients in K, their intersection
points in L ∩ C have coordinates that live in a quadratic
extension of K. To see this, we can parametrize L

L = {(t, α+ βt) : t ∈ R} α, β ∈ K

and then apply the equation for C to (t, α + βt) to get
a quadratic polynomial in t alone, with coefficients in K.
This results in the following conclusion:

Proposition 4.8. If a is constructible, then there exists
a tower of fields

Q ⊂ K1 ⊂ · · · ⊂ Kn 3 a

such that
[Ki : Ki−1] = 2

and hence
[Kn : Q] = 2n

Moreover, we have, for some r ∈ N,

degQ a = r

Example. We can use this proposition to conclude that
it is not possible to trisect an arbitrary angle. Take π

3 ;
we can ask whether θ = π

9 is constructible. Define

α = 2 cos θ = eπi/9 + e−πi/9

Then we have

α3 = eπi/3 + 3eπi/9 + 3e−πi/9︸ ︷︷ ︸
3α

+e−πi/3

and hence
α3 − 3α− 1 = 0

Thus, α satisfies a cubic polynomial with no linear factors
and which therefore is irreducible. So

degQ α = 3

which, by our proposition, means that α and θ are not
constructible.

5
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Proposition 4.9. Let L ⊂ R be the set of constructible
numbers. Then L is a subfield of R.

Proof. Let a, b ∈ L. We know that

1. a+ b ∈ L since we can simply extend a segment of
length a by one of length b.

2. −a ∈ L because if we can construct (a, 0), we can
just as easily construct (−a, 0).

3. ab ∈ L. To show this, we first construct a triangle
of side length 1 along the x-axis and side length a
vertically. We then construct the similar triangle
with side length b along the x-axis; this will have
side length ab vertically.

4. 1
a ∈ L. We use similar triangles again, this time
beginning with a triangle of side length a and 1 and
scale it down so that the a side has length 1.

and so L is a field. �

Proposition 4.10. If a is constructible, then
√
a is con-

structible.

Proof. To construct it, we

1. Draw a circle with diameter a + 1 and divide the
diameter L into two segments of lengths a and 1 at
a point p.

2. Draw a line perpendicular to L through p. The
height of this line in the circle is

√
a.

Thus, not only is L a field, but it is closed under square
root. �

Theorem 4.11. a is constructible iff there exists a tower
of fields

Q ⊂ K1 ⊂ · · · ⊂ Kn 3 a
such that

[Ki : Ki−1] = 2

Theorem 4.12. Let F be a field, f ∈ F [X] irreducible.
Then ∃K/F such that f has a root in K.

Proof. Simply take F [X]/(f). f is maximal since it is
irreducible, so K is a field. Then x̄, the equivalence class
of x mod (f), satisfies polynomial f(x̄) = 0. �

Example. Let F = F2 = Z/(2). The polynomial

f(x) = x2 + x+ 1

is the unique irreducible quadratic polynomial in this
field. Then we can form a field

F2[X]/(x2 + x+ 1) ∼= F4

This is the unique field of four elements. (Note that it is
not Z/4, which is a ring but not a field.)

Lecture 5 — 2/1/12

Definition 5.1. Let F be a field The polynomial ring
over F is given by

F [X] = {anxn + · · ·+ a1x+ a0 : ai ∈ F} ⊂ FF

Note that the polynomial ring does not map injec-
tively to functions on F ; this is pointedly the case where
F is a finite field.

Definition 5.2. Let f = anx
n + · · ·+a0. The derivative

of f is given by

f ′ = n · anxn−1 + · · ·+ a1

where n is the image of n under the canonical map Z→ F .

Example. Let

f = x2 + x = x(x− 1) ∈ F2[X]

Then f ′ = 1 because (x2)′ = 0. Note that any field
of positive characteristic admits nonconstant polynomi-
als whose derivatives are zero.

Theorem 5.3. Let F ↪−→ K, f, g ∈ F [X] ↪−→ K[X].
Then any identity in F [X] holds in F [X] iff it holds in
K[X]. This includes:

1. ∃q, r ∈ F [X] : g = fq + r with deg r < deg f when
carried out in F [X] iff g = fq + r in K[X]. Note
that q, r are unique.

2. f |g ∈ F [X] ⇐⇒ f |g ∈ K[X].

3. gcdF [X](f, g) = gcdK[X](f, g).

4. Let h ∈ F [X]. Then h | f and h | g ∈ F [X] ⇐⇒
h |f and h |g ∈ K[X].

Claim 5.4. Let F ↪−→ K be a field extension, f, g ∈
F [X]. If f is irreducible over F and f, g have a common
factor in K[X], then f |g ∈ F [X].

Proof. Since f, g ∈ K[X] have a common factor h, then
h is a common factor of f, g ∈ F [X]. But f is irreducible;
thus, we must have f = h, which means f | g, as de-
sired. �

Lemma 5.5. Let α ∈ F , f ∈ F [X], f(α) = 0. Then α
is a multiple root (i.e., (x− α)2 |f) iff f ′(α) = 0.

6
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Proof. Suppose first that (x− α)2 |f . Then ∃g ∈ F [X] :
f = (x− α2)g. Taking derivatives, we have

f ′ = (x− α)2g′ + 2(x− α)g

Then clearly, f ′(α) = 0.
Now suppose f ′(α) = 0. Then ∃h ∈ F [X] : f =

(x− α)h, and so f ′ = (x− α)h′ + h. Then we have

0 = f ′(α) = (α− α)h′(α) + h(α) = h(α)

This means α is a root of h, which yields (x− α) |h. But
since f = (x− α)h, we have

(x− α) |f

as desired. �

Corollary 5.6. If f ∈ F [X] is irreducible, f ′ 6= 0, then
f has no repeated roots in any extension F ↪−→ K.

Proof. Suppose that f had a repeated root in some ex-
tension K/F . Then in K[X], f, f ′ are not relatively prime
(they have a common factor). But then they also have a
common factor in F [X]. Then f |f ′, but deg f ′ < deg f .
This implies f ′ = 0, a contradiction. �

Proposition 5.7. Let F be a finite field. Then

|F | = #F = pr

for some p ∈ P, r ∈ N.

Proof. Let ϕ : Z → F be the canonical homomor-
phism. We have kerϕ = (p) for some prime p and
imϕ = Z/(p) = Fp. So F is a finite-dimensional vec-
tor space over Fp, which implies #F = pr. �

Theorem 5.8. There exists a unique field of order pr,
which we denote

Fpr = Fq

Example. Let F = F2. There are four polynomials of
degree 2 over F2. Three of them factor: x2, x(x− 1), and
(x− 1)2. The remaining one,

x2 + x+ 1

is the unique irreducible polynomial of degree 2 in F2.
Then

F2[X]/(x2 + x+ 1) = F4

is the unique field of four elements because every field of
four elements must be a quadratic extension of F2 and
there is only one irreducible quadratic polynomial in F2.
Let us write out the multiplication table of F4, given as

F4 = {0, 1, α, α+ 1}

We have

0 1 α α+ 1
0 0 0 0 0
1 0 1 α α+ 1
α 0 α α+ 1 1

α+ 1 0 α+ 1 1 α

Definition 5.9. Let R be a ring. We define the group of
units of R to be

R× = {x : ∃x−1, xx−1 = x−1x = 1}

Note that for a field F , F× = F − {0}.

Observation 5.10. Let F be a field of order q = pr.
Then F× is a finite abelian group of order q − 1. So
∀α ∈ F , α 6= 0, we have αq−1 = 1, and hence every such
α is a root of the polynomial

xq−1 − 1

Multiplying by x, we get that every element of F is a root
of the polynomial

xq − x

Since |F | = q and deg(xq − x) = q, there are no repeated
roots; thus,

xq − x =
∏
α∈F

(x− α)

Lemma 5.11. Let K be any field, G ⊂ K× a finite sub-
group of K×. Then G is cyclic.

Proof. First, consider any a, b ∈ G of orders α and β re-
spectively. If gcd(α, β) = 1, then ord(ab) = αβ. Suppose
that G is not cyclic. Then by the above (and since G is
a finite abelian group),

n := lcm{ord(α) : α ∈ G} < |G|

(Actually, the lcm properly divides |G|, but the strict
inequality is all we need.) But this means that the poly-
nomial xn − 1 has |G| > n roots. However, a polynomial
cannot have more roots than its degree, and hence, G
must be cyclic. �

Example. Note that the last deduction in the above
proof requires that K be a field. For instance, we have

(Z/8)× = {1, 3, 5, 7} ∼= Z/2× Z/2

But x2 − 1 has four roots in Z/8.

7
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Proof (of Theorem). First, we will show that ∃K/Fp a
field extension of order pr for any r ∈ N. Let L/Fp be
any extension in which the polynomial f = xq−x factors
completely. Note that f ′ = qxq−1 − 1 which is −1 for
x = 0 and q − 1 for x 6= 0. Since f ′(α) 6= 0 for every
α ∈ L, it has q distinct roots. We claim that

K := {α ∈ L : f(α) = αq − α = 0} ↪−→ L

is a subfield (where by the above, we have #K = q).
If a, b ∈ K, then aq = a and bq = b, so (ab)q = ab, and

hence ab ∈ K. Moreover, we have (a + b)q = aq + bq =
a+ b, so a+ b ∈ K. So K is indeed a field, as desired.

Now we want to show that K is unique. Suppose we
have two extensions K,K ′ with #K = #K ′ = pr = q.
We claim that K ∼= K ′.

We know that K× is cyclic; let α ∈ K be a generator
of K×. So

K = {0, 1, α, α2, . . . , αq−2}

In particular, we have K = Fp(α). Now let f be the irre-
ducible polynomial satisfied by α/Fp. By definition, we
have

f |xq − x ∈ K

But then f |xq − x ∈ Fp, and hence also f |xq − x ∈ K ′.
Since xq−x factors completely in K ′, f factors completely
in K ′, so f has a root α′ ∈ K ′. Then K ′ = Fp(α′), and
hence

K ∼= Fp[X]/(f) ∼= K ′

as desired. �

Lecture 6 — 2/3/12

Before we proceed, we recall some general facts about
finite fields.

• F finite =⇒ ∃p ∈ P, r ∈ N : #F = pr = q.

• #F = q =⇒ ∀x ∈ F, xq − x = 0.

• F finite =⇒ F× cyclic.

• ∃!F : #F = pr.

Proposition 6.1. Fpr has a subfield isomorphic to Fpk
iff k |r.

Proof. First, let Fpk be a subfield. Then Fpr is a m-
dimensional vector space over Fpk . Hence,

pr = #Fpr = (pk)m = pkm

and thus k |r.
Now suppose instead that k |r. Then ∃m : pr = (pk)m.

So we have
(xp

k

− x) |(xp
r

− x)

Then xp
k−x factors completely in Fpr since xp

r−x does.
Take

{x ∈ Fpr : xp
k

− x = 0} ⊂ Fpr

This is a subfield of order pk. �

Proposition 6.2. The irreducible factors of xq − x/Fp
are exactly the irreducible polynomials over Fp whose de-
gree k divides r.

Proof. Let f ∈ Fp[X] be irreducible of degree k |r. f fac-
tors completely in Fpr ⊃ Fpk = Fp[X]/(f), which means
it has a common root with xq − x. But since f is irre-
ducible over Fp, this means that

f |xq − x ∈ Fp

Now let f ∈ Fp[X] be irreducible and f |xq − x ∈ Fp.
We know that f factors completely in Fpr . Choose α a
root of f in Fpr . We have

Fp ↪−→ Fp(α) ↪−→ Fpr

and so deg f = k |r, as desired. �

Example. Let us consider the finite fields of characteris-
tic 2. We have F4 = F2(α), where α is a root of x2+x+1,
the unique irreducible quadratic polynomial over F2. We
can factor

x4 − x = x(x+ 1)(x2 + x+ 1)

We also have F2 ↪−→ F8. What are the cubic polyno-
mials over F2? We have four which factor 1, 1, 1

x3 x2(x+ 1) x(x+ 1)2 (x+ 1)3

two which factor 1, 2

x(x2 + x+ 1) (x+ 1)(x2 + x+ 1)

and two which do not factor

x3 + x+ 1 x3 + x2 + 1

We can write

x8 − x = x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

Consider also F2 ↪−→ F16. Of the quartic polynomi-
als in F2, 5 factor into linear factors, 1 factors into two
quadratics, 4 factor into one linear and one cubic factor, 3
factor into a quadratic factor and two linear factors, and
three are irreducible. We can factor

x16 − x = x(x+ 1)(x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + 1)

(x4 + x3 + x2 + x+ 1)

Definition 6.3. A polynomial f ∈ F [X] is said to split
completely in an extension K/F if f factors into linear
factors in K[X].

8
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Theorem 6.4 (Primitive Element Theorem). Let F be a
field, char(F ) = 0, and F ↪−→ K a finite extension. Then
∃α ∈ K : K = F (α). α is called a primitive element for
K/F (it generates the entire extension).

Note that this theorem also holds for all finite fields
F of arbitrary characteristic.

Proof. We know K = F (α1, . . . , αk) for some elements
α1, . . . , αk ∈ K. By induction on k, we can assume that
F ↪−→ F (α1, . . . , αk−1) has a primitive element β. But
then our problem reduces to the base case, of showing
that

F ↪−→ F (β, αk) = F (α1, . . . , αk)

has a primitive element. So, we will try to show that if
K = F (α, β), then K = F (γ) for some γ ∈ K. In partic-
ular, we claim that for all but finitely many c ∈ K, β+cα
is primitive.

Let f, g be the irreducible polynomials satisfied by α
and β, respectively, over F . Let K ′/K be an extension
in which f and g split completely. Let α := α1, . . . , αm
be the roots of f ; β = β1, . . . , βn, the roots of g. Let

γ = β + cα

Now let L = F (γ). We claim that α ∈ L; it will im-
mediately follow that β = γ − cα ∈ L, and hence L = K.
Define a polynomial h ∈ L[X] by

h(x) = g(γ − cx)

We know that the roots of g are βi; thus, the roots of h
are given by

x =
γ − βi
c

=
β − βi
c

+ α

We want to choose c so that gcd(f, h) = x − α; this
will imply that α ∈ L, as desired. But we can compute
this gcd in K ′[X] instead But f splits completely over K ′;
this means it suffices to show that none of the αj (except
for α) is a root of h. This is the case whenever

c 6= β − βi
αi − α

which completes the proof. �

Lecture 7 — 2/6/12

Definition 7.1. Let F ↪−→ K be a field extension. The
elements α1, . . . , αn ∈ K are algebraically independent if
they do not satisfy any f ∈ F [X1, . . . , Xn] (i.e., if there
is no f such that f(α1, . . . , αn) = 0). Alternatively, we
have a tower of extensions

F ↪−→ F (α1) ↪−→ F (α1, α2) ↪−→ · · · ↪−→ F (α1, . . . , αn)

where each extension is transcendental.

Definition 7.2. α1, . . . , αn ∈ K are a transcendence
base for K/F if they are algebraically independent and

F (α1, . . . , αn) ↪−→ K

is an algebraic extension. That is, α1, . . . , αn are a max-
imal collection of algebraically independent elements.

We will for the duration of this lecture assume that
any transcendence basis is finite.

Theorem 7.3. Let α1, . . . , αm ∈ K be a maximal tran-
scendence basis and β1, . . . , βn ∈ K be algebraically inde-
pendent. Then n ≤ m.

The proof of this theorem involves repeatedly replac-
ing the αi with the βj in the transcendence basis; how-
ever, it is omitted.

Corollary 7.4. Any two transcendence bases have the
same cardinality.

Definition 7.5. The transcendence degree of K/F is de-
fined as the cardinality of any transcendence basis for
K/F .

Definition 7.6. Let F ↪−→ K be a field extension.
We say that K/F is purely transcendental if K =
F (α1, . . . , αn) for algebraically independent α1, . . . , αn.

Note that all transcendental extensions can be decom-
posed as

F
p.t.
↪−→ F (α1, . . . , αn)

alg.
↪−→ K

Theorem 7.7 (Luroth). Any transcendental subfield of
C(t) is purely transcendental.

Theorem 7.8 (Catelnuovo-Enriquez). If K ⊂ C(t, s) has
transcendental degree 2, then K is purely transcendental.

Theorem 7.9 (Clemens-Griffiths). The above does not
hold for 3; that is, ∃K ⊂ C(t, s, u) with transcendental
degree 3 that is unpure.

Example. The field

K = C(x)[y]/(y2 − x2 − 1)

is purely transcendental over C; however,

L = C(x)[y]/(y2 − x3 − 1)

is not pure.

9
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One important context of this discussion is that of in-
tegrating functions. If f(x) ∈ C(x) (the field of rational
functions over C), then∫

f(x) dx

can be calculated using partial fractions.
Meanwhile, ∫

dx√
x2 + 1

=

∫
C

dx

y

where C is the curve y2 = x2 + 1. We can parametrize
C: “every” line through C meets C exactly once, so we
parametrize by the slope t through the point (0, 1). Solv-
ing for the parametrization gives(

2t

1− t2
,

1 + t2

1− t2

)

so we integrate ∫
dx

y
=

∫
2

1− t2
dt

This works because our parametrization exists, which
is the same as saying

C(x)[y]/(y2 − x2 − 1) ∼= C(t)

where x 7→ 2t
1−t2 and y 7→ 1+t2

1−t2 .
How, then, do we solve∫

dx√
x3 + 1

This integral spurred huge mathematical progress. A key
fact in this problem is that L is not purely transcendental.

Consider surfaces in C× C.

Z = {(x, y) : y2 = x2 + 1}

W = {(x, y) : y2 = x3 + 1}

Z is a sphere with punctures; integration along a path is
path-independent. W is a torus with punctures; integra-
tion is path-dependent.

Lecture 8 — 2/8/12

Definition 8.1. Let R be any commutative ring with
unit. We say that f ∈ R[X1, . . . , Xn] is symmetric if it is
invariant under the action of Sn on R[X1, . . . , Xn]; that
is, if

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), ∀σ ∈ Sn

Note that we do not mean to say that the values of
the polynomials are equal; for example, for R = Fp,

xp1 − x1 6= xp2 − x2
Rather, we want to say that the polynomials themselves
are equivalent.

Example. Start with any monomial. Then the sum of
the elements of its orbit under the action of Sn (which
we refer to as the orbit sum) is symmetric. For instance,
starting with xk1 , we have

xk1 + · · ·+ xkn

This particular sum is called the power sum. If we start
with, say, x1x2, we instead get∑

i<j

xixj

Starting with x1x
2
2 yields∑

i 6=j

xix
2
j

Definition 8.2. We define the ith elementary symmetric
polynomial over x1, · · · , xn, written

si = si(x1, . . . , xn)

as the orbit sum of x1 · · ·xi.
The elementary symmetric polynomials (as polynomi-

als in u1, . . . , un) are the coefficients, as a polynomial in
x, of

p(x) =

n∏
i=1

(x− ui)

= xn − s1xn−1 + s2x
n−2 − · · · ± sn

Theorem 8.3. Let R be a ring. Any symmetric poly-
nomial g ∈ R[u1, . . . , un] is expressible as a polynomial
of the elementary symmetric polynomials s1, . . . , sn in
u1, . . . , un.

Example. We can write the second power sum

x21 + · · ·+ x2n

in terms of elementary symmetric polynomials as

x21 + · · ·+ x2n =

 n∑
i=1

xi

2

− 2
∑
i<j

xixj

= s21 − 2s2

Similarly, we can write

∑
i 6=j

xix
2
j =

 n∑
i=1

xi

∑
i<j

xixj

− 3
∑
i<j<k

xixjxk

= s1s2 − 3s3

10
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Proof. Say g(u1, . . . , un) is symmetric. Let us define

g0(u1, . . . , un−1) = g(u1, . . . , un−1, 0)

This is symmetric in the variables u1, . . . , un−1. Induct-
ing on n, we can write g0 as

g0(u1, . . . , un−1) = Q(s01, . . . , s
0
n−1)

a polynomial in the elementary symmetric polynomials
over u1, . . . , un−1.

Now we claim that we can write

g(u1, . . . , un) = Q(s1, . . . , sn−1) + sn · h(u1, . . . , un)

where h is symmetric of degree = deg g−n. The difference
g(u1, . . . , un)−Q(s1, . . . , sn−1) = 0 whenever un = 0. So,
un |g(u1, . . . , un)−Q(s1, . . . , sn−1). But then by symme-
try,

uj |g(u1, . . . , un)−Q(s1, . . . , sn−1)

and hence,

sn |g(u1, . . . , un)−Q(s1, . . . , sn−1)

Then h is the quotient of this division, and it must be
symmetric since everything else in the equation is sym-
metric. Then by inducting on the degree of g with n fixed,
we are done. �

Remark. Let R = Z. Note that the power sums

{xk1 + · · ·+ xkn}

generate the ring of Sn-invariant polynomials in the vari-
ables x1, . . . , xn over Q, but not over Z as the elementary
polynomials do.

Observation 8.4. Let F ↪−→ K be a field extension. Let
f ∈ F [X], and say that f splits completely in K, with
roots α1, . . . , αn. Since we can write

f(x) =

n∏
i=1

(x− αi)

= xn − s1xn−1 + s2x
n−2 − · · · ± sn

we have
si = si(α1, . . . , αn) ∈ F

Then if p(u1, . . . , un) is any symmetric polynomial, we
have p(α1, . . . , αn) ∈ F .

Definition 8.5. Define p ∈ F [X] by

p(x) = xn − s1xn−1 + s2x
n−2 − · · · ± sn

=

n∏
i=1

(x− ui)

with si = si(u1, . . . , un). We want to define a function

D(u1, . . . , un) =
∏
i<j

(ui − uj)2

= (−1)(
n
2)
∏
i6=j

(ui − uj)

D is invariant under Sn, so we can write

D = ∆(s1, . . . , sn)

The polynomial ∆ is called the discriminant of p.

Note that ∆ is well-defined whether or not p actually
factors in its home field. Also, note that ∆ evaluates to
zero iff p has multiple roots in some extension.

Example. Let

p(x) = x2 − s1x+ s2 = (x− α)(x− β)

where s1 = α+ β and s2 = αβ. We have

∆ = (α− β)2

= α2 − 2αβ

= s21 − 4s2

which is the well-known discriminant for monic quadratic
polynomials.

Now consider

p(x) = x3 − s1x2 + s2x− s3

which has a much more complicated discriminant (which
we will give without computation),

∆ = −4s31s3 + s21s
2
2 + 18s1s2s3 − 4s32 − 27s23

(In this formula, we have actually taken si = |si|.) Note
that if s1 = 0, this reduces to

∆ = −4s32 − 27s23

We can arrive at this version by substituting x 7→ x− s1
3

for general cubics.

Definition 8.6. The Vandermonde matrix is given by

V =


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
xn−11 xn−12 · · · xn−1n



11
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Observation 8.7. Note that the determinant vanishes
whenever xi = xj for some i 6= j. It is given by

detV = ±
∏
i<j

(xi − xj)

which is a polynomial of degree
(
n
2

)
. This polynomial is

invariant under the alternating group, but not the sym-
metric group. We could make it invariant my squaring,
but let us examine an alternate route.

Consider the matrix

V ′ =


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
xn1 xn2 · · · xnn


Note that detV = 0 and detV ′ = 0 iff xi = xj for some
i 6= j, so detV |detV ′. ∀a1 < · · · < an, the polynomial

det(x
aj
i )

det(xji )

will be symmetric. The collection of such polynomials
form an additive basis of the symmetric polynomials.

Lecture 9 — 2/10/12

Definition 9.1. Let F ↪−→ K be a field extension,
f ∈ F [X]. We say that K is a splitting field for f/F
if

1. f splits completely in K as

f(x) =

n∏
i=1

(x− αi), αi ∈ K

2. K is the minimal extension in which f splits com-
pletely; that is,

K = F (α1, . . . , αn)

Proposition 9.2. Every f ∈ F [X] has a splitting field.

Proof. We know that f splits completely in some ex-
tension L/F . Then take the roots α1, . . . , αn of f ; the
extension

F ↪−→ F (α1, . . . , αn)

is a splitting field.
We can also determine the splitting field algorithmi-

cally. Choose an irreducible factor f0 of f . Let

K1 = F [X]/(f0)

Then ∃α ∈ K1 : f(α) = 0. We replace f by f/(x − α)
and repeat this process as necessary. �

Proposition 9.3.

1. Let K/F be a splitting field for f ∈ F [X]. Then
[K : F ] <∞.

2. Let F ↪−→ K ↪−→ L be a tower of field extensions.
If L is a splitting field over F , then L is a splitting
field over K.

3. Let F ↪−→ L be a field extension, f ∈ F [X]. Then
L contains at most one splitting field for f/F .

Proof. All immediate. �

Theorem 9.4. Let F ↪−→ K be a field extension. Sup-
pose that K is a splitting field over F . Then ∀g ∈ F [X]
irreducible over F , if g has a root in K, then g splits
completely in K.

Proof. Say K/F is a splitting field for f ∈ F [X]. We
can factor f as

f(x) =

n∏
i=1

(x− αi)

Take g ∈ F [X] irreducible such that ∃β ∈ K : g(β) = 0.
Since

K = F (α1, . . . , αn)

we can write
β = p(α1, . . . , αn)

for some p ∈ F [X1, . . . , Xn].
Let {p1, . . . , pk} be the orbit of p under the action of

Sn on F [X1, . . . , Xn], with p1 = p. Set

βi = pi(α1, . . . , αn)

and define a polynomial

h(x) =

k∏
i=1

(x− βi) ∈ K[X]

We claim that h ∈ F [X]. We can write

h(x) = xn − s1xn−1 + s2x
n−2 − · · · ± sn

where the

si = si(β1, . . . , βk)

= si(p1(α1, . . . , αn), . . . , pk(α1, . . . , αn))

Since the si are symmetric on the β1, . . . , βk and the pi
are symmetric on the α1, . . . , αn, si is symmetric with re-
spect to Sn on α1, . . . , αn. Hence, we can express h as a
polynomial in the elementary symmetric polynomials over
α1, . . . , αn, and thus in the coefficients of f . But these
coefficients are in F , and we have h ∈ F [X] as desired.

If g irreducible in F but has root in common with h
in K, g |h ∈ K[X]. But then g |h ∈ F [X]. Since h splits
completely in K, so does g. �
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Example. Any quadratic extension is a splitting field
K = F (α) where α satisfies a quadratic polynomial
f = x2 + ax + b, and its inclusion in K enables f to
split completely.

Example. Let α = 3
√

2 and ω = e2πi/3, set αi = αiω, and
recall our observations about field extensions concerning
these values.

K = Q[X]/(x3 − 2) ∼= Q(α1) ⊂ R ⊂ C

This is not a splitting field over Q, since x3 − 2 only has
one root in K, as we have previously shown. If, however,
we include other roots in the extension, then we can make
K into a splitting field.

Note that we do need to check that K does not con-
tain other roots; for instance, if ω ∈ K, since ω satisfies
x3−1
x−1 = x2 +x+1, then that polynomial would split com-

pletely in K. Fortunately, we have also shown previously
that ω /∈ K.

Theorem 9.5. Let F be a field of characteristic zero.
Then any two splitting fields of f ∈ F [X] are isomorphic.

Proof. Say K1,K2 any two splitting fields for f/F . By
the primitive element theorem, we have K1 = F (γ) for
some γ ∈ K1. Let g ∈ F [X] be irreducible polynomial
satisfied by γ/F Extend K2 by a field L such that g has
a root γ′, and let K ′ = F (γ′) ⊂ L. Then

K1
∼= F [X]/(g) ∼= K ′

via an F -isomorphism sending γ 7→ γ′. Since K1 is a
splitting field of f , so then is K ′. But then K ′,K2 ⊂ L
are both splitting fields for f/F , and hence K ′ ∼= K2

because L can contain at most one splitting field. �

Lecture 10 — 2/13/12

We shall assume from this point onward that all fields in
question have characteristic zero.

Definition 10.1. Recall that we call two field exten-
sions K/F and K ′/F isomorphic, or more specifically
F -isomorphic

K/F ∼= K ′/F

if ∃ϕ : K → K ′ such that we have the diagram

K
ϕ
// K ′

F
?�

OO

id // F
?�

OO

An F -isomorphism from K/F to itself is called an
F -automorphism. These are the symmetries of the field
extension K.

Lemma 10.2. Let F ↪−→ K and F ↪−→ K ′ be field ex-
tensions. Then we have the following

1. Let f ∈ F [X], ϕ : K → K ′ an F -isomorphism. If
α ∈ K is a root of f , then so is ϕ(α) ∈ K ′.

2. Suppose that K = F (α1, . . . , αn). Let ϕ,ϕ′ : K →
K ′ be F -isomorphisms. If ∀i, ϕ(αi) = ϕ′(αi), then
ϕ = ϕ′.

3. Let f ∈ F [X] be irreducible, with a root α ∈ K
and α ∈ K ′ in each extension. Then ∃!ϕ : F (α)→
F (α′) an F -isomorphism sending α 7→ α′.

Proof. Omitted. �

Definition 10.3. Let F ↪−→ K be a field extension. The
Galois group of the extension K/F is defined as

Gal(K/F ) = Aut(K/F )

the group of F -automorphisms of K.

Definition 10.4. A field extension F ↪−→ K is called a
Galois extension if

|Gal(K/F )| = [K : F ]

Definition 10.5. Let K be a field, H a group of au-
tomorphisms of K. The fixed field of H is the set of
elements of K that are fixed by every element of H,

KH = {α ∈ K : σ(α) = α,∀σ ∈ H}

Note that KH ⊆ K is a subfield.

Theorem 10.6. Let K be a field, H a finite group of
automorphisms on K. Let F = KH . Let β1 ∈ K,
{β1, . . . , βr} its H-orbit. Then the irreducible polynomial
of β1/F is

g(x) = (x− β1) · · · (x− βr)

It follows that β1 is algebraic over F with

degF β1 = r

and that degF β1 | |H|.
Proof. We want to show that g as defined is irreducible.
We can write

g(x) = (x− β1) · · · (x− βr)
= xr − b1xr−1 + · · · ± br

Each bi is a symmetric polynomial in the βj . Since H
permutes the βj , it fixes each bi, so bi ∈ KH .

Now let h ∈ F [X] with β1 as a root. For each
i = 1, . . . , r, we can find σi ∈ H with σi(β1) = βi. Since
the σi are F -automorphisms, then σi(β1) = βi must also
be roots of h. Then g |h ∈ K[X], which means

g |h ∈ F [X]

It follows that g must be irreducible as desired. �

13
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Observation 10.7. Let F ↪−→ K be algebraic but infi-
nite. Then we can construct an infinite tower of fields

F < F1 < F2 < · · · < K

To do so, start by taking α1 ∈ K − F and F1 = F (α1).
Since α1 is algebraic over F , [F1 : F ] < ∞, so F1 < K.
We can then take α2 ∈ K − F1 and F2 = F1(α2). Simi-
larly, [F2 : F1] < ∞, so F2 < K. Continuing in this way,
we get our desired tower.

Theorem 10.8 (Fixed Field Theorem). Let K be a field,
H a finite group of automorphisms on K, F = KH its
fixed field. Then

[K : F ] = |H|

Proof. Let n = |H|. We know that K/F is algebraic and
degF β |n for every β ∈ K. This tells us that

[K : F ] <∞

By the primitive element theorem, ∃γ ∈ K : K = F (γ).
Since γ generates K, if σ ∈ H fixes γ, we would have
σ = id. So the stabilizer of γ is {1} ⊂ H, and hence its
orbit Hγ has order

|Hγ| = n

Then degF γ = n, which means

[K : F ] = n

as desired. �

Definition 10.9. Let F ↪−→ K be a field extension. An
intermediate field L is a field

F ⊆ L ⊆ K

We say an intermediate field is proper if L 6= F and
L 6= K.

Note that every L-automorphism of K is also an F -
automorphism of K, and hence

Gal(K/L) ⊆ Gal(K/F )

Lemma 10.10. Let F ↪−→ K be a finite field extension,
G = Gal(K/F ). Then

|G| | [K : F ]

Proof. By the fixed field theorem, we know that |G| =
[K : KG]. Since F -automorphisms are the identity on F ,
F ⊆ KG, and hence we have the tower of extensions

F ↪−→ KG ↪−→ K

Then
|G| = [K : KG] | [K : F ]

as desired. �

Proposition 10.11. Let K be a field, H a finite group
of automorphisms on K. Then KH ↪−→ K is Galois and
H = Gal(K/KH).

Proof. By definition, H ⊆ Gal(K/KH). By the above
lemma, we know |G(K/KH)| | [K : KH ], and the fixed
field theorem gives |H| = [K : KH ]. Then G(K/KH) ⊆
H, and we have equality as desired. �

Observation 10.12. Let F ↪−→ K be a finite exten-
sion with primitive element γ1 ∈ K. Let f ∈ F [X]
be the irreducible polynomial satisfied by γ1 with roots
γ1, . . . , γr ∈ K.

We know that there is a unique F -isomorphism σi :
F (γ1)→ F (γi) with γ1 7→ γi. Since K = F (γ1), it follows
that K = F (γi) for each i, so σi is an F -automorphism
of K. Since every F -automorphism must take γ1 7→ γi
(since γi are all the roots of f in K), we have

Gal(K/F ) = {σi}

with |Gal(K/F )| = r.

Theorem 10.13. Let F ↪−→ K be a finite field extension
with G = Gal(K/F ). The following are equivalent

1. K/F is a Galois extension (i.e., |G| = [K : F ])

2. F = KG

3. K is a splitting field over F

We use the second condition to show that an element
α ∈ K is actually also in F ; we use the third condition to
determine that an extension is Galois.

Proof. Showing that 1 ⇐⇒ 2 is quick. The fixed field
theorem gives us |G| = [K : KG]. Since F ↪−→ KG ↪−→
K,

|G| = [K : F ] ⇐⇒ F = KG

Now we will show that 1 ⇐⇒ 3. By the primi-
tive element theorem, we can choose γ1 ∈ K such that
K = F (γ1). Let f ∈ F [X] be the irreducible polynomial
satisfied by γ1. We know that

[K : F ] = degF γ1 = deg f

Let γ1, . . . , γr ∈ K be the roots of f in K. Then we have
|G| = r by our previous observation.

If r = |G| = [K : F ], then since deg f = [K : F ],
f splits completely in K and hence K = F (γ1) =
F (γ1, . . . , γn) is a splitting field. Conversely, if K is a
splitting field, the same reasoning applied in reverse yields
|G| = r = [K : F ]. �

Corollary 10.14.

1. Every finite extension K/F is contained in a Galois
extension.

14
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2. If K/F is Galois, L an intermediate field, then K/L
is also Galois, and

Gal(K/L) ⊆ Gal(K/F )

Observation 10.15. Let F ↪−→ K be a Galois extension
with G = Gal(K/F ). Let g ∈ F [X] split completely in K
with roots β1, . . . , βr. Then

1. G acts on the roots {βi} by permuting them.

2. If K is a splitting field of g/F , we claim that
the action of G is faithful.2 We know that K =
F (β1, . . . , βr), and we get faithfulness from the fact
that σ ∈ G is determined entirely by its mapping of
the generators β1, . . . , βr. It follows that G ↪−→ Sr.

3. If g is irreducible over F , the action of G is transi-
tive.3 Since g is irreducible, we know that g must
be the irreducible polynomial satisfied by β1. Since
F = KG, then {βi} = Gβ1, which is the statement
of transitivity.

It follows that if K is a splitting field of g/F and g is
irreducible in F , then G ↪−→ Sr embeds transitively.

We will now state and prove the fundamental theorem
of Galois theory, which provides for a bijective correspon-
dence between intermediate fields and subgroups of the
Galois group. Having build up significant machinery con-
cerning Galois extensions, this proof will be trivial.

Theorem 10.16 (Fundamental Theorem of Galois The-
ory). Let F ↪−→ K be a Galois extension, G =
Gal(K/F ). Then there is a bijective correspondence be-
tween

{H : H ≤ G} ←→ {L : F ↪−→ L ↪−→ K}

In one direction, the bijection maps

H 7−→ KH

and in the inverse direction, it takes

L 7−→ Gal(K/L)

Proof. Let H ≤ G and L = KH . By the fixed field
theorem, H = Gal(K/L). Now suppose that L is an
intermediate field, H = Gal(K/L). Then since K/F is
Galois, so is K/L, and equivalently, L = KH . �

Observation 10.17. Note that if L and L′ are interme-
diate fields and H and H ′ are their corresponding sub-
groups, L ⊂ L′ iff H ⊃ H ′. In particular, F corresponds
to Gal(K/F ) and K corresponds to {1}.

If we have L corresponding to H, the since K/L is
Galois and H = Gal(K/L), we have

[K : L] = |H|

We also know that |G| = [K : F ] = [K : L][L : F ] and
|G| = |H|[G : H], so we also have

[L : F ] = [G : H]

Corollary 10.18. A finite field extension F ↪−→ K has
finitely many intermediate fields.

Lecture 11 — 2/15/12

Example. Let F = Q. Take α =
√

3, β =
√

5 and let
K = F (α, β). K is the splitting field of

(x2 − 3)(x2 − 5)

and hence is a Galois extension. We have

|Gal(K/F )| = [K : F ] = 4

and hence Gal(K/F ) is either C4 the cyclic group or V the
Klein four group. We know that F (α), F (β), and F (αβ)
are three distinct intermediate fields of K/F , and hence
correspond to proper subgroups of Gal(K/F ). Since
[K : L] = 2 for each of these intermediate subgroups L,
they correspond to subgroups of order 2. However, C4 has
only one element of order 2, and hence Gal(K/F ) = V ,
which has three elements (and hence three subgroups) of
order 2.

These are the only proper subgroups of Gal(K/F ),
which means that F (α), F (β), and F (αβ) are the only
proper intermediate fields.

Note that given

F ↪−→ L ↪−→ K

where K/F is Galois, we are only guaranteed that K/L is
Galois, but not that L/F is. To determine whether L/F
is Galois, we have the following:

Theorem 11.1. Let F ↪−→ K be a Galois extension with
G = Gal(K/F ). Let L be the fixed field KH for a sub-
group H ≤ G. Then L/F is Galois iff H E G.4 If so,
then

Gal(L/F ) ∼= G/H

2A group action on X is faithful if ∀g ∈ G, ∃x ∈ X : gx 6= x; in other words, if g fixes X, g = e.
3A group action on X is transitive if Gx = X for any x ∈ X; in other words, if X has a single orbit under G.
4A subgroup N ≤ G is normal if ∀n ∈ N , ∀g ∈ G, gng−1 ∈ N . In other words, a normal subgroup is a subgroup that is invariant

under conjugation.
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Proof. Let ε1 ∈ L be a primitive element for L/F ,
g ∈ F [X] the irreducible polynomial for ε1. Since K
is a splitting field, ε1 ∈ K, g splits completely with roots
ε1, . . . , εr. Note that L/F is Galois iff L is a splitting
field, which is the case iff

∀i ∈ {1, . . . , r}, εi ∈ L

We will show that this holds iff H E G.
Since G is transitive on {ε1, . . . , εr}, we know that

∀i ∈ {1, . . . , r},

∃σi ∈ G : σi(ε1) = εi

Fix i and consider σi. We have F (εi) = L iff εi ∈ L (since
degF ε1 = degF εi). This is the case iff the stabilizer of
εi is H. Meanwhile, the stabilizer of σ(ε1) is the conju-
gate group σHσ−1. The condition that H = σHσ−1 is
exactly the condition that H E G, which is our desired
conclusion.

Suppose that L/F is Galois. Then εi ∈ L for each i.
An F -automorphism σ ∈ G takes ε1 7→ εi for some i, and
hence maps

σ : F (ε1) = L −→ L = F (εi)

The restriction σ|L is hence an F -automorphism of L.
This restriction operation induces a group homomor-

phism

ϕ : G −→ Gal(L/F )

We have

kerϕ = {σ ∈ G : σ|L = id} = H

We also have that

|G/H| = [G : H] = |Gal(L/F )|

which means imϕ = Gal(L/F ), and by the First Isomor-
phism Theorem,

G/H ∼= Gal(L/F )

as desired. �

Let us now apply the machinery of Galois theory to
the study of cubic polynomials over a field F . Consider

f(x) = x3 − a1x2 + a2x− a3
= (x− α1)(x− α2)(x− α3)

where αi ∈ K are the roots of f in the splitting field K
of f over F .

Note that a1 = α1 + α2 + α3 ∈ F . Hence, α1 and α2

generate α3, and we have the tower of extensions

F ↪−→ F (α1) ↪−→ F (α1, α2) = F (α1, α2, α3) = K

Let L = F (α1). Since f/F is irreducible,

[L : F ] = 3

and we can factor

f(x) = (x− α1)q(x)

where q is the quadratic polynomial with roots α2, α3.
Either q is irreducible over L or it is not; if it is, then

[K : L] = 2 [K : F ] = 6

Otherwise,
L = K [K : F ] = 3

Example. Let F = Q, f(x) = x3 + 3x+ 1, which is irre-
ducible over Q. The derivative f ′(x) = 3x2 + 3 is strictly
greater than zero, so f is strictly increasing and hence has
only one real zero α1. α1 cannot generate the complex
roots of f , so [K : F ] = 6 where K is the splitting field
of f .

Example. Let F = Q, f(x) = x3 − 3x + 1, also irre-
ducible over Q. If α1 is a root, then α2

1 − 2 is another
root. We can generate the third root as given above, and
hence in this case, [K : F ] = 3.

By its action on the roots of the cubic f , the Ga-
lois group G = Gal(K/F ) is a transitive subgroup of S3.
There are two such groups: S3 itself, and the alternating
(and cyclic) group A3. If [K : F ] = 3, then G = A3; if
[K : F ] = 6, then G = S3. The key distinction is whether
or not q is irreducible over L.

To decide this, we will use the value

δ = (α1 − α2)(α1 − α3)(α2 − α3) ∈ K

which is the square root of the discriminant D of f .5 Note
that δ 6= 0 since the roots are distinct (we assume F has
characteristic zero).

Theorem 11.2. Let F be a field, f ∈ F [X] an irreducible
cubic polynomial, K the splitting field of f over F , and
G = Gal(K/F ). Let D be the discriminant of f ; then

1. If δ =
√
D ∈ F , then [K : F ] = 3 and G = A3.

2. If δ =
√
D /∈ F , then [K : F ] = 6 and G = S3.

Proof. Permuting the roots of f multiplies δ by the sign
of the permutation. If δ ∈ F , it is fixed by G. Then every
σ ∈ G must be even, meaning G = A3 and [K : F ] = 3.
Otherwise, G = S3 and [K : F ] = 6. �

5This is slight abuse of terminology, where we previously defined the discriminant as a polynomial in the elementary symmetric
polynomials.
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The alternating group A3 has no proper subgroups (it
is the cyclic group of order 3). Hence, if G = A3, there
are no intermediate fields, and our lattice is simply

F

K = F (α1, α2, α3)

3

This must be the case since [K : F ] = 3 is prime. If in-
stead we have G = S3, we have four proper subgroups to
consider, namely 〈y〉, 〈xy〉, 〈x2y〉, all of order 2, and 〈x〉
of order 3. Our lattice of fields is then

F

F (α1) F (α2) F (α3)

F (δ)

K = F (α1, α2, α3)

3 3 3

2

2 2 2
3

The corresponding lattice of Galois groups is

G = S3

〈y〉 〈xy〉 〈x2y〉

〈x〉 = A3

{1}

2 2 2 3

Lecture 12 — 2/17/16

We now turn to the study of quartic polynomials. Let
F be any field, f ∈ F [X] an irreducible quartic polyno-
mial. Let K/F be the splitting extension of f over F ,
G = Gal(K/F ). In K, we can write

f(x) = (x− α1)(x− α2)(x− α3)(x− α4)

Then G acts faithfully on the roots {αi}, and we have
G ↪−→ S4 transitively.

We can enumerate the transitive subgroups of S4:

• S4: symmetries of the tetrahedron. |S4| = 24.

• A4: rotations of the tetrahedron. |A4| = 12. A4CS4

is normal.

• D4: symmetries of the square. |D4| = 8. S4 has
three conjugate subgroups isomorphic to D4.

• C4: rotations of the square. |C4| = 4. S4 has three
conjugate subgroups isomorphic to C4.

• D2: reflections of the square. |D2| = 4. D2 C S4 is
normal.

Example. Q(
√
a,
√
b) is a quartic extension as long as√

b /∈ Q(
√
a). Its Galois group must be D2; it is given by

the automorphisms {√
a 7→

√
a√

b 7→
√
b{√

a 7→ −
√
a√

b 7→
√
b{√

a 7→
√
a√

b 7→ −
√
b{√

a 7→ −
√
a√

b 7→ −
√
b

We can also view K = Q(
√
a,
√
b) as the splitting field of

a quartic polynomial. Choose any element of K not in
one of the subfields, such as α =

√
a+
√
b. Take its orbit

{
√
a+
√
b,
√
a−
√
b,−
√
a+
√
b,−
√
a−
√
b}

The irreducible polynomial of α over Q is the product of
the monomials with these elements as roots.

Consider now the dihedral group D4. It has three
normal subgroups of order 4:

• D4 acts on the set of two diagonals of a square.
Let HD = Z2 × Z2 be the subgroup preserving the
diagonals.

• D4 acts on the set of two edge symmetries of a
square. Let HA = Z2 × Z2 be the subgroup pre-
serving opposite edges.

• Let HO = Z4 be the subgroup preserving orienta-
tion.

Meanwhile, it has only one subgroup of order 2:

• The group {1,−1}, representing rotation by 180◦.

Example. Consider the following tower of field exten-
sions:

Q

Q(
√

5)

Q(
√

4 +
√

5)

17
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Note that Q(
√

4 +
√

5)/Q is not Galois; we can permute

Q(
√

4 +
√

5) to Q(
√

4−
√

5). Let

α =

√
4 +
√

5 α′ =

√
4−
√

5

Take K = Q(α, α′). We have a quartic irreducible poly-
nomial given by

f(x) = (x− α)(x+ α)(x− α′)(x+ α′)

= x4 − 8x2 + 11

Now consider the following square, with the vertices la-
beled by the roots ±α,±α′:

α α′

−α−α′

The subgroup HD comprises the following automor-
phisms: {

α 7→ α

α′ 7→ α′{
α 7→ −α
α′ 7→ α′{
α 7→ α

α′ 7→ −α′{
α 7→ −α
α′ 7→ −α′

α2 is invariant under this group but not under all of D4;
hence, it must generate a nontrivial subfield

Q(
√

5) = KHD

Note that this specific correspondence is dependent on
the labeling of our square. The subgroup HA comprises
the following automorphisms:{

α 7→ α

α′ 7→ α′{
α 7→ α′

α′ 7→ α{
α 7→ −α′

α′ 7→ −α{
α 7→ −α
α′ 7→ −α′

αα′ is invariant under this group but not under all of D4;
hence, it must generate a nontrivial subfield

Q(
√

11) = KHA

Finally, consider the fixed field of the subgroup HO pre-
serving orientation, for which we have

Q(
√

55) = KHO

We also have the fixed field of the only normal subgroup
of order 2,

T = HD ∩HA

which has corresponding intermediate field

Q(
√

5,
√

11) = KT

We get the lattice

Q

Q(
√

5) Q(
√

11) Q(
√

55)

Q(
√

5,
√

11)Q(α) Q(α′)

K = Q(α, α′)

2
2 2

2
2 22 2

2

2
2

which can also be written

Q

KHD KHA KHO

KTQ(α) Q(α′)

K

2
2 2

2
2 22 2

2

2
2

and with corresponding Galois group lattice

18
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G

HD HA HO

T? ?

{1}

2
2 2

2

2
2

Note that Q(α) and Q(α′) do not correspond to normal
subgroups of D4; they are not Galois over Q.

Example. We can find a field extension with Galois
group C4 by a similar construction to the above. Let

α =

√
2 +
√

2 α′ =

√
2−
√

2

Then αα′ =
√

2 ∈ Q(α). Hence, Q(α) = Q(α′), and our
Galois group will be C4.

Recall our initial setup for general quartic polynomi-
als. G must be one of the transitive subgroups of S4; we
can ask whether G is contained in each of them. Let

D =
∏
i<j

(αi − αj)2

with square root

δ =
∏
i<j

(αi − αj)

As with cubic polynomials, permutation of roots on δ
multiplies δ by the sign of the permutation, so δ is invari-
ant under even permutations. Hence,

G ⊆ A4 ⇐⇒
√
D ∈ F

Note that only D2, A4 ⊆ A4 in S4.
Since A4 C S4, then we also have A4 ∩G E G.

F ↪−→ KA4∩G = F (
√
D)

Indeed, if
√
D /∈ F , we have the tower

F

F (
√
D)

KD2∩G

K

2

(3)

(4)

The fixed field KD2∩G is splitting field of a cubic, called
the resolvent cubic. To construct this field, we want to
find an element of K that is invariant under D2 but no
larger subgroup of G. Take

β1 = α1α2 + α3α4 β2 = α1α3 + α2α4

β3 = α1α4 + α2α3

These are in KD2∩G Every permutation of the αi per-
mutes the βj (S4/D2 = S3), and hence

g(x) = (x− β1)(x− β2)(x− β3) ∈ F [X]

We also have

KD2∩G = K(βj)

Lecture 13 — 2/22/12

Let

ζn = e2πi/n

be an nth root of unity. We will assume that n is some
prime p. We know that the irreducible polynomial for ζp
over Q is

xp−1 + · · ·+ x+ 1

which has roots ζ, ζ2, . . . , ζp−1. Hence, Q(ζp) is its split-
ting field, and therefore also a Galois extension of Q with

[Q(ζp) : Q] = p− 1

Definition 13.1. We call F (ζp) a cyclotomic extension.

Proposition 13.2. Gal(Q(ζp) : Q) ∼= Cp−1.

Proof. Let G = Gal(Q(ζp) : Q). We know that every
σ ∈ G is determined by its mapping ζp 7→ ζip. Then let

σi(ζp) = ζip

Since ζpp = 1, there is a natural bijection

G −→ F×p
σi 7−→ i

which is an isomorphism. Since F×p ∼= Cp−1, we have our
desired result. �

Observation 13.3. Note that 〈σi〉 = G iff 〈i〉 = F×p .
Also, our proof above works just as well for any arbitrary
field F ⊆ C, not necessarily Q. However, in the case of
general F , we instead get that Gal(F (ζp) : Q) ≤ Cp−1.
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Example. Consider ζ = ζ17. Since 〈3〉 = F×17, we know
that

G = 〈σ3〉

where G = G(K/F ). Let σ = σ3. The subgroups of G
are

〈σ〉 ⊃ 〈σ2〉 ⊃ 〈σ4〉 ⊃ 〈σ8〉 ⊃ 〈id〉

which corresponds to the tower of extensions

F = K〈σ〉
2

↪−→ K〈σ
2〉 2
↪−→ K〈σ

4〉 2
↪−→ K〈σ

8〉 2
↪−→ K

Now let θ = 2π/17. We claim that F (cos θ) = K〈σ
8〉.

Since ζ + ζ−1 = 2 cos θ, we know that cos θ ∈ K. More-
over, ζ satisfies the polynomial

(x− ζ)(x− ζ−1) = x2 − 2(cos θ)x+ 1 ∈ F (cos θ)

Thus,

[K : F (cos θ)] ≤ 2 and [F (cos θ) : F ] ≥ 8

So F (cos θ) is either K〈σ
8〉 or K. But F (cos θ) ⊆ R,

whereas K 6⊆ R; thus,

F (cos θ) = K〈σ
8〉

as desired.

Lemma 13.4. Let ζ = ζp. Let

α = c1ζ + c2ζ
2 + · · ·+ cp−1ζ

p−1

be a linear combination with ci ∈ Q. If α ∈ Q, then
c1 = c2 = · · · = cp−1 and α = −c1.

Proof. Since ζ satisfies

xp−1 + · · ·+ x+ 1

we can solve for ζp−1 and rewrite

α = (−cp−1)1 + (c1 − cp−1)ζ + · · ·+ (cp−2 − cp−1)ζp−2

Since {1, ζ, . . . , ζp−2} are a basis for K/F , we must have
all coefficients except −cp−1 equal to zero. This gives our
desired result. �

Example. Again, take ζ = ζ17. Taking iterative powers
of ζ3, we get the powers

1, 3,−8,−7,−4, 5,−2,−6,−1,−3, 8, 7, 4,−5, 2, 6

Recall that σ = σ3 is a generator for the Galois group
G = Gal(K/F ). The orbit Gζ (under the action of au-
tomorphism) is the set {ζi : ζi 6= 1}. Let H = 〈σ2〉. H
splits Gζ into two H-orbits,

{ζ, ζ−8, ζ−4, . . .} {ζ3, ζ−7, ζ5, . . .}

Let α1, α2 denote the orbit sums. Then {α1, α2} is a
G-orbit, and our study of fixed fields tells us that the
irreducible polynomial for α1 and α2 is

(x− α1)(x− α2)

To compute this polynomial, we want to determine

s1(α) = α1 + α2 s2(α) = α1α2

Since s1 is the sum of all ζi with ζi 6= 1, the irreducible
polynomial of ζ gives

s1(α) = −1

We can compute s2(α) by our previous lemma. Since
s2(α) ∈ Q and since expanding α1α2 results in 64 sum-
mands of the form ζi, we know that each ζi appears four
times, which yields

s2(α) = −4

Then our polynomial is

(x− α1)(x− α2) = x2 + x− 4

Its discriminant is D = 17, and hence K〈σ
2〉 = F (

√
17).

In the same way, we can determine the quadratic ex-
tension over a field F that is contained in F (ζp) for any
odd prime p.

Proposition 13.5. Let p 6= 2 be prime. Let L be the
unique quadratic extension over Q contained in Q(ζp). If
p ≡ 1 (mod 4), then L = Q(

√
p); if p ≡ 3 (mod 4), then

L = Q(
√
−p).

Note that we know the extension is unique by the Ga-
lois correspondence, since the cyclic group F×p for p prime
has exactly one subgroup of index 2.

Proof. Analogous to the example. �

Theorem 13.6 (Kronecker-Weber Theorem). Every Ga-
lois extension of Q with an abelian Galois group is con-
tained in a cyclotomic extension Q(ζn).

Observation 13.7. Let

n = pa11 p
a2
2 · · · p

ak
k

be the prime decomposition of some n ∈ N. Then the
fields Q(ζpaii

) intersect only in Q and∏
Q(ζpaii

) = Q(ζn)

Theorem 13.8. Let F be a field with ζp ∈ F for some p
prime, and let b ∈ F with b 6= 0. Then the polynomial

g(x) = xp − b

is either irreducible or splits completely in F .
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Proof. Let K/F be the splitting field of g and suppose
there is a root β of g not in F . Then [K : F ] > 1, which
means ∃σ ∈ Gal(K/F ) : σ 6= id. Since β generates K,
σ(β) = ζrpβ for 0 < r < p. Meanwhile, σ(ζp) = ζp. Then

σk(β) = ζkrp β

This attains every root ζiβ, and hence the action of G is
transitive on the roots of g. Thus, g is irreducible over F ,
which completes our proof. �

Theorem 13.9. Let F ⊆ C be a subfield containing ζp
for p prime, and let F ↪−→ K be a Galois extension with
degree [K : F ] = p. Then K = F ( p

√
α) for some α ∈ F .

Proof. See Artin. �

Lecture 14 — 2/24/12

Definition 14.1. Let K1,K2 ⊆ K be subfields. The
composite field ofK1 andK2, denotedK1K2, is the small-
est subfield of K containing both K1 and K2. We can also
define the composite as the intersection of all subfields
K ′ ⊆ K containing both K1,K2 ⊆ K ′ as subfields.

Proposition 14.2. Let F ↪−→ K be a field extension,
and let K1/F and K2/F be finite field extensions of F
contained in K. Then

[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

Proof. Let {α1, . . . , αn} be a basis for K1/F , and
{β1, . . . , βm} a basis for K2/F . Then we have

K1K2 = K1(β1, . . . , βm) = F (α1, . . . , αn, β1, . . . , βm)

The βj span K1K2 over K1, so

[K1K2 : K1] ≤ m = [K2 : F ]

with equality iff the βj are independent over K1. �

Corollary 14.3. If [K1 : F ] = n, [K2 : F ] = m, with
gcd(n,m) = 1, then

[K1K2 : F ] = [K1 : F ][K2 : F ]

Proposition 14.4. Let F ↪−→ K be a Galois extension,
F ↪−→ F ′ any extension. Then KF ′/F ′ is a Galois ex-
tension with Galois group

Gal(KF ′/F ′) ∼= Gal(K/K ∩ F ′)

We have the diagram

F

K ∩ F ′

K F ′

KF ′

G

G

Proof. Since K/F is Galois, K is the splitting field of a
polynomial f ∈ F [X]. Then KF ′/F ′ is the splitting field
of f ∈ F ′[X], and hence KF ′/F ′ is Galois. Consider the
restriction map

ϕ : Gal(KF ′/F ′) −→ Gal(K/F )

σ 7−→ σ|K

This is a homomorphism with kernel

kerϕ = {σ ∈ Gal(KF ′/F ′) : σ|K = id}

Note that σ ∈ kerϕ is the identity on both F ′ and K by
construction. Thus, kerϕ = {id}, and hence ϕ is injec-
tive.

Let H = imϕ, KH the corresponding fixed field in K
containing F . Since H also fixes F ′, we know that

KH ⊇ K ∩ F ′

Meanwhile, the group Gal(KF ′/F ′) fixes KHF ′. By the
Galois correspondence, this tells us that

KHF ′ = F ′

which means KH ⊆ F ′ and hence KH ⊆ K ∩ F ′. Then
KH = K ∩ F ′, and the Galois correspondence yields

H = Gal(K/K ∩ F ′)

which completes our proof. �

Corollary 14.5. Let K/F be a Galois extension, F ′/F
any finite extension. Then

[KF ′ : F ] =
[K : F ][F ′ : F ]

[K ∩ F ′ : F ]

Proposition 14.6. Let F be a field, K1/F and K2/F
Galois extensions. Then K1 ∩K2/F is Galois.

Proof. Let f ∈ F [X] be an irreducible polynomial with
root α ∈ K1 ∩ K2. Since α ∈ Ki and Ki is a splitting
field over F , f splits in each. Then f splits in K1 ∩K2,
which is therefore Galois as desired. �

Proposition 14.7. Let F be a field, K1/F and K2/F
Galois extensions. Then K1K2/F is Galois, and

Gal(K1K2/F ) = {(σ, τ) : σ|K1∩K2
= τ |K1∩K2

}
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F

K1 ∩K2

K1 K2

K1K2

Proof. We know that K1 is the splitting field of some
polynomial f1 ∈ F [X], and similarly K2 for f2 ∈ F [X].
Then K1K2 is the splitting field of f1f2 (eliminating mul-
tiple roots). Hence, K1K2/F is Galois.

Consider the homomorphism

ϕ : Gal(K1K2/F ) −→ Gal(K1/F )×Gal(K2/F )

σ 7−→ (σ|K1
, σ|K2

)

Its kernel is trivial on K1 and on K2 and hence on the
composite, so ϕ is injective. Since

(σ|K1)|K1∩K2 = σ|K1∩K2 = (σ|K2)|K1∩K2

we know that imϕ ⊆ H.
Note that for each σ ∈ Gal(K1/F ), there are precisely

|Gal(K2/K1 ∩ K2)| elements τ ∈ Gal(K2/F ) satisfying
σ|K1∩K2

= τ |K1∩K2
. Then

|H| = |Gal(K1/F )||Gal(K2/K1 ∩K2)|

= |Gal(K1/F )| |Gal(K2/F )|
|Gal(K1 ∩K2/F )|

Then we have |H| = |Gal(K1K2/F )| = [K1K2 : F ],
which yields

imϕ = H

which completes the proof. �

Corollary 14.8. Let K1/F and K2/F be Galois exten-
sions. If K1 ∩K2 = F , then

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F )

Conversely, if K/F is a Galois extension with
Gal(K/F ) = G1 × G2 a product of two subgroups, then
there are two Galois extensions K1/F and K2/F such
that K = K1K2 and K1 ∩K2 = F .

Lecture 15 — 2/27/12

Definition 15.1. Let F be a field, α algebraic over F .
We say that α is solvable if α ∈ K for some K that can
be obtained by a tower of field extensions

K0 = F ↪−→ K1 ↪−→ K2 ↪−→ · · · ↪−→ Kn = K

where Ki/Ki−1 is Galois of order pi prime.

Observation 15.2. Let QS be the field of solvable num-
bers over Q. The field of constructible numbers QC is
given by those elements α ∈ Q̄ obtained by a tower of
extensions with [Ki : Ki−1] = 2; it is clear, then, that

QC ⊆ QS

Now choose some β ∈ QS ⊆ Q̄. Then we claim that
α ∈ Q̄ is solvable iff it is solvable over F = Q(β). If
α is solvable over F , we can simply append the tower
F

...
↪−→ F (α) to the tower Q ...

↪−→ F , which yields solvabil-
ity over Q. If instead α is solvable over Q, it is trivially
solvable over F . Although some extensions in our tower
might collapse, none will decompose because they all have
prime degree. This yields the following diagram:

Q

QC

QS

Q̄

F

FC

FS

F̄

where the horizontal edges represent equality.

Theorem 15.3. QS ( Q̄. Specifically, suppose α ∈ Q̄
has irreducible polynomial f ∈ Q[X], and let K be the
splitting field of f/Q. Then if Gal(K/Q) is A5 or S5,
then α is not solvable.

Proof. Let G = Gal(K/Q). WLOG, we can assume
G = A5. For if G = S5, then Gal(K/Q(

√
D)) = A5,

and we can simply replace Q with Q(
√
D).

If α is solvable, then we have a tower

Q

F1

...

Fn−1

Fn

K

KF1

...

KFn−1

KFn=
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Our theorem then reduces to the following lemma:

Lemma 15.4. Let K/F be Galois with Gal(K/F ) = A5,
L/F also Galois with Gal(L/F ) = Zp. Then we have the
following diagram

F

K

L

KL

A5

Zp

Zp

A5

Proof of Lemma. We have only two possibilities for
Gal(KL/K). First, suppose Gal(KL/K) = {e}. Then
KL = K, so Gal(KL/F ) = A5. But this yields a surjec-
tion A5 � Zp, which is impossible.

It must be the case, then, that Gal(KL/K) = Zp.
Then [KL : K] = p, and it follows that [KL : L] = 60.
Moreover we know we have an injection

Gal(KL/L) ↪−→ Gal(K/F )

and so we must have Gal(KL/L) = Gal(K/F ) = A5, as
desired.

It remains still to be shown that there exists such a
polynomial f as we assumed in our hypothesis. We will
show that ∃f ∈ Q[X] irreducible and of degree 5 with
Galois group S5. To do so, we make use of the following
lemma:

Lemma 15.5. If G ≤ Sp is transitive (or equivalently, if
G contains a p-cycle σ) and G contains a transposition
τ = (i, j), then G = Sp.

Proof of Lemma. We begin by relabeling the set of letters
{1, . . . , p} so that σ takes 1 7→ 2 7→ · · · 7→ p 7→ 1. Now
replace σ by σj−i. Then σ carries i 7→ j. We can relabel
our letters again so that

σ = 1 7→ 2 7→ · · · 7→ p 7→ 1

τ = 1 7→ 2 7→ 1

which makes σ = (1, . . . , p) and τ = (1, 2). Then
στσ−1 = (2, 3), and repeated conjugation yields

∀i ∈ {1, . . . , p}, G 3 (i, i+ 1)

These transpositions generate Sp, as desired.

Claim 15.6. ∃f ∈ Q[X] irreducible and of degree 5 with
Galois group S5.

Proof of Claim. Consider the splitting field K/Q for such
a polynomial. We know that Gal(K/Q) would be tran-
sitive in S5 (i.e., would contain a 5-cycle). We want to
construct f such that it also contains a transposition. In
other words, we want f to have exactly 3 real roots and
2 complex conjugate roots.

Take

f0(x) = x(x2 − 4)(x2 + 4)

= x5 − 16x

This polynomial is negative in (−∞,−2) and changes sign
at −2, 0, and 2. Its local maximum in (−2, 0) is 15, and
its local minimum in (0, 2) is −15. Thus, we can add a
constant term −15 < c < 15 and preserve the form of our
roots. By the Eisenstein criterion for p = 2,

f(x) = f0(x) + 2 = x5 − 16x+ 2

is irreducible.

This completes the proof of our theorem. �

Lecture 17 — 3/2/12

Definition 17.1. A representation of a finite group G
is a finite-dimensional complex vector space V with an
action of G on V ; that is, a map

ρ′ : G× V −→ V

satisfying

∀g, h ∈ G,∀v ∈ V, ρ′(g, ρ(h, v)) = ρ′(gh, v)

Equivalently, we have a homomorphism

ρ : G −→ GL(V ) = Aut(V )

Definition 17.2. A morphism of representations V , W
of G is a linear map ϕ : V →W that commutes with the
action of G; that is, the following diagram

V

g

��

ϕ
// W

g

��

V
ϕ
// W

commutes ∀g ∈ G. Note that on the left, we have written
g for ρV (g), and similarly for ρW (g) on the right, so more
verbosely, we have

ϕρV (g) = ρW (g)ϕ

We can also think of the map as respecting conjugacy:
ϕ = gϕg−1. A morphism is, in particular, a G-module
homomorphism.

23



Math 123—Algebra II Max Wang

Definition 17.3. A subrepresentation of a representa-
tion V of a group G is a vector subspace W ⊆ V that is
invariant under G; that is,

∀g ∈ G, g(W ) = W

The direct sum of two representations V , W of G is also
a representation, given by

g · (v, w) = (gv, gw)

Recall that the dual space V ∗ = Hom(V,C). To define
the dual representation, we want the pair v, v∗ to be asso-
ciated with ρ(g)v, ρ∗(g)v∗; that is, we want ρ∗ to preserve

the dual relationship. We know that the map V
g−→ W

induces the dual map W ∗
gt−→ V ∗, which is defined by

V
g
//

gt (λ) = λg   

W

λ
��

C

However, if we have

V
g−→ V

h−→ V

then (h ◦ g)t = gt ◦ ht . Then we cannot define the action
ρ∗ by the transpose; instead, we take

ρ∗(g) = ρ(g−1)t : V ∗ −→ V ∗

which is a valid representation and respects duality.

Example. Let G be any finite group.

1. Let V = C. The trivial representation is given by
taking g ≡ id; that is, gv = v.

2. Let V = C; then Aut(V ) = C∗. We get another
one-dimensional representation via the character
homomorphism

χ : G −→ C∗

3. Let V be a vector space with basis {eg : g ∈ G}.
The regular representation is given by

g : eh 7→ egh

4. Suppose G acts on a set S. The associated
permutation representation is a vector space V
given by a basis {es : s ∈ S}. The action of G
on V is given by

g : es 7→ eg(s)

For instance, Sn acts on Cn by permuting the coor-
dinates.

Given a finite group G, our goal in our study of repre-
sentations is to classify, to describe, and to construct all
representations of G.

Definition 17.4. We say that a representation V of G is
irreducible if it has no nontrivial subrepresentations; that
is,

@W ( V,W 6= 0 : ∀g ∈ G, g(W ) = W

Theorem 17.5. Every representation of a group G is a
direct sum of irreducible representations.

Proof. The theorem follows immediately from the fol-
lowing lemma:

Lemma 17.6. Let V be any representation, W ⊂ V a
proper subrepresentation. Then ∃W ′ ⊂ V a subrepresen-
tation such that V = W ⊕W ′.

We supply two proofs for this lemma.

First Proof of Lemma. We want an inner product h that
is preserved by the action of G; that is, ∀g ∈ G,

h(v, u) = h(gv, gu)

Recall that an inner product is a positive definite Hermi-
tian form; that is, it satisfies

1. Conjugate symmetry. h(v, u) = h(u, v).

2. Linearity in the first argument.

h(v + w, u) = h(v, u) + h(w, u)

h(λv, u) = λh(v, u)

3. Positive-definiteness. h(v, v) ≥ 0 with equality iff
v = 0.

Take h0 to be any inner product on V . By averaging over
G,

h(v, u) =
∑
g∈G

h0(gv, gu)

we get such an inner product. Then the subspace W⊥

taken with respect to h is our desired complementary sub-
representation.

Second Proof of Lemma. Let W ′ ⊂ V be any comple-
mentary linear subspace, and take

p0 : V = W ⊕W ′ −→W

to be any projection map. We want a projection p re-
specting conjugacy. Once again, we simply average over
all of G, and define

p =
∑
g∈G

g ◦ p0 ◦ g−1

Then ker p gives our desired complementary subrepresen-
tation.
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This proves the theorem. �

Example. This decomposition into irreducibles does not
hold in general for infinite groups; consider, for instance,

Z ∼=

{(
1 n
0 1

)
: n ∈ Z

}
⊂ GL2

Lecture 18 — 3/5/12

Before continuing with our study of representation theory,
we take note of the following two preliminaries:

Theorem 18.1. Let V be a finite-dimensional complex
vector space, g : V → V a linear map with

gn = id

for some n ∈ N. Then g is diagonalizable; that is, V has
an eigenbasis of g-eigenvectors.

Note that if G is finite, gn = e for some n for every
g ∈ G, so we can always diagonalize g’s representation as
a linear map.

Theorem 18.2. Define

τk(x) =
∑

xki

be the power sums over the variables x1, . . . , xn. The
set τ1, . . . , τn generates the ring of symmetric polynomials
over Q.

We will devote most of this lecture to studying the rep-
resentations of the simplest nonabelian group, S3. From
the outset, we have two obvious irreducible representa-
tions:

1. U , the trivial representation, where U ∼= C and S3

acts as the identity.

2. U ′, the alternating representation, where U ′ ∼= C
and S3 acts as the sign character.

We also have the permutation representation, where S3

acts by permuting the coordinates of C3. However, this
representation contains a copy of U , namely

U ∼= {(x, x, x) : x ∈ C}

Taking the complementary representation, we get a third
irreducible representation

3. V , the so-called standard representation, given by

V = {(x, y, z) : x+ y + z = 0}

This is irreducible because the action of S3 on U is faith-
ful, and hence no subspace is invariant.

Now let W be any representation of G. We will ap-
proach the problem of describing W by considering the
eigenvalues and eigenvectors of the action of S3 ⊃ A3 	
V . Let σ = (1 2 3) ∈ A3, and let ω = e2πi/3 be a primi-
tive cube root of unity. σ has eigenvectors (1, ω, ω2), with
eigenvalue ω, and (1, ω2, ω) with eigenvalue ω2. It is easy
to see that span(v, w) = V .

Now let τ ∈ S3 be any transposition. We have

τστ−1 = σ2

Suppose that v ∈ W is a σ-eigenvector with eigenvalue
ω. We claim that w = τ(v) is also an eigenvector, with
eigenvalue ω2. For we have

σ(w) = σ(τ(v))

= τ(σ2(v))

= τ(ω2(v))

= ω2τ(v)

= ω2w

So τ acts by exchanging the ωi-eigenspaces of σ. If W is
irreducible, then W = span(v, w) = V .

Suppose instead that v has eigenvalue 1. Then w =
τ(v) is also an eigenvector with eigenvalue 1, since τ only
transposes the ω- and ω2-eigenspaces. We have the fol-
lowing cases:

1. w = v. If W is irreducible, then W = span(v) = U .

2. w = −v. If W is irreducible, then W = span(v) =
U ′.

3. w, v linearly independent. Then

span(v + w) ∼= U

span(v − w) ∼= U ′

This demonstrates that U,U ′, and V are the only irre-
ducible representations of S3.

In general, this example illustrates that to understand
a representation V of a finite group G, we want to know
the eigenvalues of each element g ∈ G. We can use sym-
metric polynomials (since the eigenvalues are expressed in
the characteristic polynomial) to convey this information.

Since the power sums generate the ring of symmet-
ric polynomials, it will be enough to know for each g the
sums

∑
λki , for this knowledge can be used to retrieve the

λi themselves. But if g has eigenvalues λi, then gk has
λki as its eigenvalues. This then motivates the following
definition:
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Definition 18.3. If V is a representation of G, we define
the character map

χ : G −→ C
g 7−→ tr(g)

that is, we associate g with the sum of its eigenvalues.
Observe that χ(g) depends only on the conjugacy class
of g ∈ G (since conjugation changes only the eigenvector,
not the eigenvalue). Hence, we can think of the character
as a map

χ : C −→ C

where C is the set of conjugacy classes of G.

The character table for S3 is given by

1 3 2

S3 e (1 2) (1 2 3)
U 1 1 1
U ′ 1 −1 1
V 2 0 −1

Note that χV (τ) is 0 because it is a transposition ω ↔ ω2

and hence has zeros along the diagonal. On the other
hand, we know that σ has eigenvalues ω and ω2, and
hence χV (σ) = ω + ω2 = −1.

Lecture 19 — 3/7/12

Let V be a representation of G. Recall that the character
of V is given by

χV : G −→ G

g 7−→ tr(g : V → V )

Definition 19.1. The invariant subspace of G of a rep-
resentation V is given by

V G = {v ∈ V : gv = v,∀g ∈ G}

It is easy to see that V G ⊆ V is a subrepresentation.

Definition 19.2. The space of endomorphisms of a vec-
tor space V is

End(V ) = Hom(V, V )

We want to know how we can determine V G, or at
least determine its dimension. To do so, we once again
rely on averaging over G to obtain G-invariance.

Theorem 19.3. The map ϕ : V −→ V given by

ϕ(v) =
1

|G|
∑
g∈G

g(v)

is a projection map V −� V G.

Proof. If w = ϕ(v), then for any h ∈ G,

hw =
1

|G|
∑
g∈G

hg(v)

=
1

|G|
∑
g∈G

g(v)

= ϕ(v)

= w

and if v ∈ V G, then

ϕ(v) =
1

|G|
∑
g∈G

v = v

and hence ϕ2 = ϕ, as desired. �

We thus have

dimV G︷ ︸︸ ︷
ϕ =


1 0

. . .

0

0
. . .


and hence

dimV G = tr(ϕ : V → V )

=
1

|G|
∑
g∈G

tr(g : V → V )

=
1

|G|
∑
g∈G

χV (g)

This dimension is the number of copies of the trivial rep-
resentation in the decomposition of V . In particular, if
V is irreducible (and not the trivial representation), the
sum ∑

g∈G
χV (g) = 0

Definition 19.4. The space of representation morphisms
between representations V and W of G is denoted

HomG(V,W ) = {α : V →W | α = ρW (g)−1 ◦ α ◦ ρV (g)}

This is a subspace of Hom(V,W ). Note also that

Hom(V,W ⊕W ′) = Hom(V,W )⊕Hom(V,W ′)

The space U = Hom(V,W ) forms a natural represen-
tation of G, given by

ρV (g) : Hom(V,W ) −→ Hom(V,W )

α 7−→ g−1αg

The key observation to make here is that

Hom(V,W )G = HomG(V,W )
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Lemma 19.5 (Schur’s Lemma). Let V , W be irreducible
representations of G. Then

dim(HomG(V,W )) =

{
1 V ∼= W

0 otherwise

Proof. Let ϕ ∈ HomG(V,W ). Both kerϕ ⊆ V and
imϕ ⊆ W are subrepresentations. Thus, either ϕ = 0
or ϕ is an isomorphism (due to the irreducibility of V
and W ). It remains to be shown that the space of iso-
morphisms is 1-dimensional in the second case. Suppose
V = W . Then the map

ϕ : V −→ V ∈ HomG(V, V )

has an eigenvector with eigenvalue λ. Then ϕ− λI has a
kernel, so ϕ− λI = 0. �

Definition 19.6. Let V and W be vector spaces. The
tensor product is a vector space V ⊗W with a bilinear
map

ϕ : V ⊕W −→ V ⊗W
(v, w) 7−→ v ⊗ w

We provide three equivalent definitions for the tensor
product (although we will not prove their equivalence)

1. Let {v1, . . . , vn} be a basis for V , {w1, . . . , wm} a
basis for W . Then we define V ⊗W as the vector
space with basis {vi ⊗ wj} and extend the map ϕ
by bilinearity. This definition readily yields

dim(V ⊗W ) = dimV · dimW

2. Let U be the vector space with basis

{v ⊗ w : v ∈ V,w ∈W}

We let U ′ be the subspace spanned by

(v + v′)⊗ w − (v ⊗ w + v′ ⊗ w)

(λv)⊗ w − λ(v ⊗ w)

v ⊗ (w + w′)− (v ⊗ w + v ⊗ w′)
v ⊗ (λw)− λ(v ⊗ w)

We define the tensor product as the quotient

V ⊗W = U/U ′

and we take (v, w) 7→ v ⊗ w.

3. We take V ⊗W to be the universal object for bilin-
ear maps V ⊕W → U . That is, every bilinear map
α : V ⊕W → U factors uniquely through V ⊗W .

V ⊕W ϕ−→ V ⊗W β−→ U

where β is linear. We have a natural bijection of

{bilinear maps V ⊕W −→ U}
l

{linear maps V ⊗W −→ U}

Note that if U = C, we have

(V ⊗W )∗ = {bilinear maps V ⊕W −→ C}

The tensor product of two representations V and W
yield a natural representation given by

g(v ⊗ w) = gv ⊗ gw

Lecture 21 — 3/19/12

Let V be a representation of a finite group G with basis
e1, . . . , en. We will notate

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k

Definition 21.1. The k-th symmetric power of V , de-
noted

Symk V ⊂ V ⊗k

is the subspace invariant under Sk. For v1, . . . , vk ∈ V ,
we write

v1 · · · vk =
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k) ∈ V ⊗k

Then v1 · · · vk ∈ Symk V , and

{ei1 · · · eik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n}

is a basis for Symk V .

Definition 21.2. The k-th alternating power of V , de-
noted

∧k V ⊂ V ⊗k

is the subspace skew-invariant under Sk; that is, where
σ(v) = εσv for σ ∈ Sk, with

εσ = sgn(σ)

For v1, . . . , vk ∈ V , we write

v1 ∧ · · · ∧ vk =
1

k!

∑
σ∈Sk

εσvσ(1) ⊗ · · · ⊗ vσ(k) ∈ V ⊗k

Then v1 ∧ · · · ∧ vk ∈ ∧k V , and

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}

is a basis for ∧k V . Note that we have < rather than
≤ because a wedge product where any of the terms are
equal will be zero, since transposing them must alternate
the sign.
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Proposition 21.3. Let V and W be representations of
a finite group G. Then the following formulas hold

1. χV⊕W = χV + χW

2. χV⊗W = χV · χW

3. χV ∗ = χV

4. χSym2 V (g) =
χV (g)2 + χV (g2)

2

5. χ∧2 V (g) =
χV (g)2 − χV (g2)

2

Proof. Suppose g has eigenvalues {λi} as an endomor-
phism of V and {µj} as an endomorphism of W . Then
{λi}∪{µj} and {λi ·µj} are the eigenvalues for g on V ⊕W
and V ⊗W respectively, which proves (1) and (2). We
know that {λi} are n-th roots of unity, for n the order of
g. Hence, {λ−1i = λi} are the eigenvalues for g on V ∗,
which proves (3). For g on Sym2 V , the eigenvalues are
{λiλj}i≤j , so

χSym2 V (g) =
∑
i≤j

λiλj

=

(∑
λi
)2

+
∑
λ2i

2

=
χV (g)2 + χV (g2)

2

Similarly, g on ∧2 V has eigenvalues {λiλj}i<j , so

χ∧2 V (g) =
∑
i<j

λiλj

=

(∑
λi
)2 −∑λ2i

2

=
χV (g)2 − χV (g2)

2
�

Definition 21.4. Let CC ⊂ CG denote the class
functions, those functions G −→ C whose value on an
element g ∈ G is determined entirely by the conjugacy
class of g.

If V and W are vector spaces, then we have

Hom(V,W ) ∼= V ∗ ⊗W

via the map (
ϕ : V →W

v 7→ `(v) · w

)
←− [ `⊗ w

It follows from this, and the first projection formula,
that, if V and W are irreducible representations of a finite
group G, then

dim HomG(V,W ) =
1

|G|
∑
g∈G

χV ∗⊗W (g)

=
1

|G|
∑
g∈G

χV (g) · χW (g)

=

{
1 V ∼= W

0 otherwise

To describe this equation, we can define a Hermitian inner
product on CC by

(χ, ψ) =
1

|G|
∑
g∈G

χ(g) · ψ(g)

Then we have proven that

Theorem 21.5. In the inner product space of CC given
by (χ, ψ), the characters of the irreducible representations
of a finite group G are orthonormal.

This has a number of consequences.

Corollary 21.6. There are only finitely many irreducible
representations, at most the number |C | of conjugacy
classes of G.

We will show shortly that, in fact, equality holds be-
tween the number of irreducible representations and the
number of conjugacy classes of G.

Corollary 21.7. Let V1, . . . , Vk be all the irreducible rep-
resentations of G. Then if V is any representation of G,

V =
⊕

V ⊕aii

where ai = (χV , χVi). Moreover, we have

χV =
∑

aiχVi

and since the χVi are linearly independent (by orthogo-
nality), V is uniquely determined by its character χV .

Proof. The formula for ai is achieved by decomposing
χV into a sum of irreducible characters, and expanding
by linearity. The number of copies of Vi will be the num-
ber of times a term (χVj , χVi) evaluates to 1. �

Corollary 21.8. A representation V is irreducible iff
(χV , χV ) = 1.

Proof. The forward implication is obvious. The reverse
is true because otherwise, V is a direct sum of irreducible,
in which case we can decompose the inner product until
it is expressed purely in terms of {(χVi , χVj )} where the
Vk are irreducible representations. The sum of these will
necessarily be strictly greater than 1. �
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Corollary 21.9. Let V be an irreducible representation,
U any one-dimensional representation. Then U ⊗ V is
irreducible.

Proof. We have

(χU⊗V , χU⊗V ) =
1

|G|
∑
g∈G

χU⊗V (g) · χU⊗V (g)

=
1

|G|
∑
g∈G

χU (g) · χU (g) · χV (g) · χV (g)

=
1

|G|
∑
g∈G

χU (g)−1 · χU (g) · χV (g) · χV (g)

= (χV , χV )

= 1

which yield irreducibility, as desired. �

Theorem 21.10 (Fixed Point Theorem). If V is the per-
mutation representation associated with the action of G
on a finite set X, then

χV (g) = #{x ∈ X : gx = x}

that is, the character of g is the number of elements in X
fixed by g.

Proof. Recall that V has basis {ex : x ∈ X} and an el-
ement g ∈ G permutes the basis vectors according to its
permutation of X. Then g has 1’s on the diagonal exactly
when g(ex) = ex and 0’s elsewhere; hence, its character
is exactly the number of fixed points. �

Observation 21.11. Let R be the regular representation
of G. Recall that it has basis {eg : g ∈ G}, with

g : eh 7→ egh

By the above theorem, the character of R is given by

χR(g) =

{
|G| g = e

0 otherwise

We first note that R is not irreducible if G 6= {e}. Now
if Vi are the irreducible representations and ai their mul-
tiplicity in the decomposition of R, we have

ai = (χR, χVi)

=
1

|G|
∑
g∈G

χR(g) · χVi(g)

=
1

|G|
(|G| · χVi(e))

= χVi(e)

= dimVi

So every irreducible representation Vi appears in R ex-
actly dimVi times. Therefore,

|G| = dimR =
∑
i

dim(Vi)
2

Note also that, for g 6= e, we have

0 = χR(g)

=
∑
i

aiχVi(g)

=
∑
i

dimViχVi(g)

=
∑
i

χVi(e)χVi(g)

These formulas are useful in filling out the character table
for a given group.

Example. Let G = S3 and suppose we want to deter-
mine the character of V ⊗ V (where V is the standard
representation). Then we simply take the square of χV ,
yielding

1 3 2

S3 e (1 2) (1 2 3)
U 1 1 1
U ′ 1 −1 1
V 2 0 −1

V ⊗ V 4 0 1

Let us now apply these theorems by writing out the
character tables for S4 and A4. Let U and U ′ denote the
standard and alternating representations, whose charac-
ters we can deduce immediately.

1 6 8 6 3

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1

Now let V be the standard representation given by

V = {(x, y, z, w) ∈ C : x+ y + z + w = 0}

with C4 = U ⊕ V . We know from the fixed point the-
orem that C4 has character χC4 = (4 2 1 0 0), and by
subtracting the character of U , we get

1 6 8 6 3

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1
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We can check that V is irreducible by taking the inner
product of the character with itself:

(χV , χV ) =
1

24

(
1(32) + 6(12) + 8(02)

+ 6((−1)2) + 3((−1)2)
)

=
1

24
(9 + 6 + 6 + 3)

= 1

Note that the sum of the squares of the dimensions (which
are listed in the first column, for e) is only

12 + 12 + 32 = 11 < 24

and hence we are not done enumerating our irreducible
representations. There must be additional representa-
tions whose dimensions, when squared, sum to 24− 11 =
13. But this can only be partitioned as

22 + 32 = 13

We get another irreducible representation by taking the
tensor product U ′ ⊗ V .

1 6 8 6 3

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1

U ′ ⊗ V 3 −1 0 1 −1

We know that U ′ ⊗ V is irreducible, and it is distinct
since its trace is distinct. Our final irreducible, which we
will call W , can be determined purely from orthogonality
relations, in particular, the formula∑

i

χVi(e)χVi(g) = 0

since we know that χW (e) = dimW = 2.

1 6 8 6 3

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1

U ′ ⊗ V 3 −1 0 1 −1
W 2 0 −1 0 2

The character allows us to determine the form of W .
Since (1 2)(3 4) is an involution6 with trace 2, and since its
eigenvalues must be roots of unity, we decompose 2 = 1+1
and hence (1 2)(3 4) acts as the identity. Note that
(1 2)(3 4) generates the Klein four group, and we have

the quotient S4/V4 ∼= S3. Then we see that W is the
standard representation of S3 pulled back along this quo-
tient:

S4
ρW //

π
""

GL2

S4/V4

ρV

OO

Note that, in general, if N C G is a normal subgroup,
a representation ρ : G −→ GL(V ) is trivial on N iff it
factors through the quotient

G //

""

GL(V )

G/N

OO

Now consider A4. Note that (1 2) and (1 2 3 4) are
simply not found in A4, and (1 2 3) splits into two con-
jugacy classes, (1 2 3) and (1 3 2). We can easily check
that U and V remain irreducible, while U ′ collapses into
U , and similarly U ′ ⊗ V collapses into U ⊗ V = V .

1 4 4 3

A4 e (1 2 3) (1 3 2) (1 2)(3 4)
U ∼= U ′ 1 1 1 1
V 3 0 0 −1

This only accounts for

12 + 32 = 10

squared degrees, so we are short two one-dimensional rep-
resentation. Note that we have

S4
// // S3

A4

?�

OO

// // A3

?�

OO

with A3
∼= Z/3. From this and the details below on

abelian groups, we get

1 4 4 3

A4 e (1 2 3) (1 3 2) (1 2)(3 4)
U ∼= U ′ 1 1 1 1
V 3 0 0 −1
W1 1 ω ω2 1
W2 1 ω2 ω 1

Observation 21.12. Let G be an abelian group. Note
that for an arbitrary g ∈ G, the map g : V −→ V deter-
mined by a representation ρ is not, in general, a morphism
of representations, since

g(h(v)) 6= h(g(v))

6An involution is a function that is its own inverse.
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in general. However, if g ∈ Z(G),7 then the above equal-
ity does hold, and hence g is a morphism. But G = Z(G)
in abelian groups. If V is irreducible, then by Schur’s
lemma, every g ∈ G acts on V by a scalar multiple of
the identity. Then every subspace of V is invariant, so
dimV = 1, and we will have

χV (g) = ζord(g)

The irreducible representations ρ of G are all therefore
elements of the dual group, which is the group of homo-
morphisms

ρ : G −→ C∗

Lecture 22 — 3/21/12

Theorem 22.1. Let V1, . . . , Vk be the irreducible repre-
sentations of a finite group G. Then {χV1

, . . . , χVk} form
a basis for the space of class functions CC .

Proof. Recall that, when we consider a representation V
of G, we can average the elements of G (considered as ele-
ments of End(V )) to obtain a G-module homomorphism.
For instance, we know that

ϕ =
1

|G|
∑
g∈G

g : V → V

is a projection V −� V G. For all representations V and
functions α ∈ CG, let us define

ϕα,V =
1

|G|
∑
g∈G

α(g) · g : V → V

To generalize our method of averaging over G, we have
the following claim:

Claim 22.2. ϕα,V is a G-module homomorphism iff
α ∈ CC .

Proof. Consider the reverse direction; we want to show
that ∀h ∈ G, v ∈ V , ϕ(hv) = hϕ(v). We have

ϕ(hv) =
1

|G|
∑
g∈G

α(g) · ghv

=
1

|G|
∑
g∈G

α(hgh−1) · hgh−1hv

since α ∈ CC =
1

|G|
∑
g∈G

α(g) · hgv

= hϕ(v)

Now take the forward direction. Assume that ∀h ∈ G,
v ∈ V , we have

ϕ(hv) = hϕ(v)

1

|G|
∑
g∈G

α(g) · ghv =
1

|G|
∑
g∈G

α(g) · hgv

1

|G|
∑
g∈G

α(g) · h−1ghv =
1

|G|
∑
g∈G

α(g) · gv

Suppose that V is the regular representation and v = ee.

1

|G|
∑
g∈G

α(g) · h−1ghee =
1

|G|
∑
g∈G

α(g) · gee

1

|G|
∑
g∈G

α(g) · eh−1gh =
1

|G|
∑
g∈G

α(g) · eg

Note that all summands on each side of the equation
will be linearly independent. If we choose h such that
α(h−1gh) 6= α(g), then we will have α(g) · eh−1gh on the
LHS and α(h−1gh)·eh−1gh on the RHS. Then ϕ is not aG-
module homomorphism, and this completes our proof.

When we average over g, we use ϕα,V with the con-
stant function α : g 7→ 1; this projects V onto V1, taking
V1 to be the trivial representation (which is irreducible
for any group G). Using α = χVi , ϕα,V similarly becomes
a projection V −� Vi.

Claim 22.3. If α ∈ CC and (α, χVi) = 0, ∀i, then α = 0.

In other words, we claim that the χVi span CC , and
since they are independent by orthogonality, they form a
basis.

Proof. Let V be irreducible, n = dimV . By Schur’s
lemma, the only G-module homomorphisms are scalar
multiples of the identity, so for some λ ∈ C, we have

ϕα,V = λI

We wish to determine λ. We have

λ =
1

n
tr(ϕα,V )

=
1

n

∑
g∈G

α(g) · χV (g)

=
|G|
n

(α, χV ∗)

= 0

Then ϕα,V =
∑
g∈G α(g) · g = 0 for all representations

V . Consider V = R the regular representation. In R,
{ρR(g)}g∈G are linearly independent elements of End(V ).
So it must be the case that α(g) = 0 for all g ∈ G, and
hence, α = 0 as desired.

This completes the proof. �

7We denote Z(G) as the center of G, the set of elements of G which commute with all elements; i.e., Z(G) = {z ∈ G : ∀g ∈ G, zg = gz}.
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Claim 22.4. Let V be any representation of G. Then

V ⊗ V = Sym2 V ⊕ ∧2 V

Proof. Let {ei} be any basis for V . Let g ∈ S2 be
the nontrivial element, which acts as a transposition
ei ⊗ ej 7→ ej ⊗ ei, and by bilinearity, v ⊗ w 7→ w ⊗ v
for any v, w ∈ V . g has order 2 and hence its eigenval-
ues are −1 and 1. Its eigenspaces are therefore precisely
Sym2 V and ∧2 V . But, setting n = dimV , we have

dim Sym2 V + dim∧2 V =
n(n+ 1)

2
+
n(n− 1)

2

= n2

= dimV ⊗ V

which gives our desired result. �

Let us now take our theory of characters and apply
it by computing the character table of S5. Let U be the
trivial representation, U ′ the alternating representation,
and V the standard representation. We immediately get
the characters for these representations and for V ⊗ U ′.
We then begin searching for the other irreducible repre-
sentations by taking tensor products, symmetric powers,
and alternating powers of these irreducibles. Consider
V ⊗ V . We have

1 10 20 30 24 15 20

S5 e (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1

V ⊗ U ′ 4 −2 1 0 −1 0 1
V ⊗ V 16 4 1 0 1 0 1

Note that

(χV⊗V , χV⊗V ) =
1

120
(256 + 160 + 20 + 24 + 20)

= 4

and hence, χV⊗V is not irreducible. We do know, how-

ever, that V ⊗ V decomposes as

V ⊗ V = Sym2 V ⊕ ∧2 V

Computing these characters, we have

1 10 20 30 24 15 20

S5 e (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1

V ⊗ U ′ 4 −2 1 0 −1 0 1
∧2 V 6 0 0 0 1 −2 0

Sym2 V 10 4 1 0 0 2 1

We can check that ∧2 V is irreducible by taking its
norm; we have

(χ∧2 V , χ∧2 V ) =
1

120
(36 + 24 + 60)

= 1

It follows from the decomposition of V ⊗ V that Sym2 V
must be the direct sum of three irreducible representa-
tions. We have thus accounted for five irreducibles, and
the sum of squared degrees thus far is

12 + 12 + 42 + 42 + 62 = 70

We are still short 50 square degrees. This can be decom-

posed into two squares either as

50 = 12 + 72

or as
50 = 52 + 52

Suppose we have another one-dimensional irreducible rep-
resentation. Any one-dimensional representation is a ho-
momorphism

ρ : S5 −→ C∗

whose kernel will be a normal subgroup whose image is
abelian. The only subgroup of S5 with abelian quotient
is A5, so every one-dimensional representation of S5 must
factor through a representation of S5/A5

∼= C2. Then U
and U ′ are the only such representations.

32



Math 123—Algebra II Max Wang

So we have two irreducible representations remaining,
both of degree 5. Consider again Sym2 V . Sym2 V decom-
poses as three irreducibles, and we can determine that one
is U and another is V by computing

(χSym2 V , χU ) = 1 (χSym2 V , χV ) = 1

We can check that the remaining irreducible representa-
tion has degree 5; call it W . Taking

χW = χSym2 V − (χU + χV )

we obtain our full character table as

1 10 20 30 24 15 20

S5 e (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1

V ⊗ U ′ 4 −2 1 0 −1 0 1
∧2 V 6 0 0 0 1 −2 0
W 5 −1 −1 1 0 1 −1

W ⊗ U ′ 5 1 −1 −1 0 1 1

Lecture 23 — 3/23/12

Suppose that H ≤ G is a subgroup of a finite group. We
would like to somehow relate the representations of G to
those of H. One direction of this relationship is easy:

Definition 23.1. Let V be a representation of G. By
restricting the action of G to H ≤ G, we can naturally
restrict V to a representation of H denoted

W = ResGH V

We see that ResGH is an operator mapping

ResGH : {reps of G} −→ {reps of H}

Note that by restricting a representation to a sub-
group H, new invariant subspaces may be created. Con-
trarily, distinct representations on G may become isomor-
phic on H.

What we want now is the relationship in the other di-
rection; from a representation W of H ≤ G, we want to
induce a representation of G.

Observation 23.2. Suppose that V is a representation
of G, W ⊂ V an H-invariant subspace. Note that, for all
g ∈ G, the subspace

gW = {g · w : w ∈W}

depends only on the left coset gH of g, since

(gh)W = g(hW ) = gW

Thus, for σ ∈ G/H a left coset of H, we will write
σW = gσW for gσ ∈ σ any representative. This moti-
vates the next definition.

Definition 23.3. A representation V of G is induced
from a representation W of H ≤ G if

V =
⊕

σ∈G/H

σW

That is, if any v ∈ V can be written uniquely as a sum of
elements in these copies of W . In this case, we write

V = IndGHW

Example.

1. G acts on its left H-cosets G/H by left multipli-
cation. Let V be the permutation representation of
this action, with basis {eσ}σ∈G/H . Denote [e] as the
identity coset [e] = H. The subspace W = 〈e[e]〉 is
invariant under H, and moreover,

σ 〈e[e]〉 = 〈eσ〉 , ∀σ ∈ G/H

Then we have V =
⊕

σ∈G/H σW , and hence V is
induced from W , which is the trivial representation
on H.

2. Let RG be the regular representation of G, which
has basis {eg}g∈G. Take RH to be the subspace
given by basis {eh}h∈H . A similar argument easily
demonstrates that RG is induced from RH .

Theorem 23.4. Let H ≤ G, W a representation of H.
Then there exists a unique (up to isomorphism) induced
representation V = IndGHW .

We thus have a corresponding operator

IndGH : {reps of H} −→ {reps of G}

Note that this is not an inverse to ResGH ! In general, a
representation is not induced by its restriction.

Proof. First, we show uniqueness. Let us start with a
representation V of G, W ⊂ V invariant under H, and

V =
⊕

σ∈G/H

σW
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We claim that the action of G on V is determined entirely
by the action of H on W and on the group H ≤ G itself.
Choose a representative gσ ∈ σ for each coset (taking
g[e] = e). Given some g ∈ G and σ ∈ G/H, say gσ = τ .
Then we can write g · gσ = gτ · h for some h ∈ H.

We know that each v ∈ V can be written

v =
∑

σ∈G/H

gσwσ

for wσ ∈W . But we have

g(gσwσ) = gτhwσ

So g(v) =
∑
gτhwσ. This indeed determines a unique

the group action on V , and this construction also proves
existence. �

Let us compute the character table of A5 ≤ S5. Note
that the odd permutations are not present in A5; more-
over, (1 2 3 4 5) breaks up into two conjugacy classes,
(1 2 3 4 5) and (2 1 3 4 5).

We know that the trivial and alternating represen-
tations on S5 collapse in A5, and we have U ∼= U ′.
Then two other pairs of irreducibles also collapse, namely
V ∼= V ⊗ U ′ and W ∼= W ⊗ U ′. We can restrict the
remaining four irreducibles of S5 to A5 to get

1 20 15 12 12

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (2 1 3 4 5)
U 1 1 1 1 1
V 4 1 0 −1 −1
W 5 −1 1 0 0
∧2 V 6 0 −2 1 1

Taking the norms of χU , χV , and χW confirms their irre-
ducibility. ∧2 V then cannot be irreducible since the sum
of square degrees would exceed |A5|. Currently, we have
accounted for

12 + 42 + 52 = 42

Hence, we have remaining

60− 42 = 18 = 32 + 32

We can check that

(χ∧2 V , χ∧2 V ) = 2

We then claim that ∧2 V = Y ⊕ Z where Y and Z are
our remaining degree 3 irreducible representations.

To show this, consider the automorphism of A5 given
by conjugation with (1 2). Observer that, while this is an
inner automorphism for S5, it is an outer automorphism
for A5 since (1 2) /∈ A5. This automorphism fixes the
conjugacy classes e, (1 2 3), and (1 2)(3 4) and exchanges
the classes (1 2 3 4 5) and (2 1 3 4 5). A group automor-
phism additionally acts on the set of representations of a

group. We start with the characters and compose them
with conjugation by (1 2)—this has the effect of switching
the characters in the last two columns.

Note that, since the characters form a basis, one of
the irreducible representations, say Y , must differe in the
last two columns of the character table. Then by com-
posing χY with the outer automorphism of conjugation
with (1 2), we get another character χZ , which is identi-
cal to χY but with the last two columns switched. This
demonstrates that we must, indeed, have ∧2 V = Y ⊕ Z
and not Y ⊕Y or Z⊕Z, because doubling the characters
in the last two columns of Y could not yield two 1’s (and
the same is true for Z).

Thus, our character table is

1 20 15 12 12

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (2 1 3 4 5)
U 1 1 1 1 1
V 4 1 0 −1 −1
W 5 −1 1 0 0
Y 3 0 −1 α 1− α
Z 3 0 −1 1− α α
∧2 V 6 0 −2 1 1

deduced from the fact that χY +χZ = χ∧2 V . We can use
orthogonality relations to solve for α; this yields

α = ϕ =
1 +
√

5

2

and so we have

1 20 15 12 12

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (2 1 3 4 5)
U 1 1 1 1 1
V 4 1 0 −1 −1
W 5 −1 1 0 0
Y 3 0 −1 ϕ ϕ̂
Z 3 0 −1 ϕ̂ ϕ

Lecture 24 — 3/26/12

Definition 24.1. For every g ∈ G, we get an automor-
phism of G given by conjugation with g

G −→ G

h 7−→ ghg−1

This yields a group homomorphism

G −→ Aut(G)

which partitions Aut(G) into a normal subgroup Inn(G)
of inner automorphisms given by conjugation and a com-
plementary collection of outer automorphisms.
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Observation 24.2. Let τ : G→ G be an automorphism,
V any representation of G. We can obtain another rep-
resentation V τ by composing ρV with τ .

G
τ //

ρV τ

==
G

ρV // GL(V )

If τ is an inner automorphism, then

V τ = V, ∀V

If τ is outer, then it may permute the irreducible repre-
sentations nontrivially, e.g., for G = A3.

Let us explore the representations of the dihedral
groups, G = D2n, the group of isometries of the regu-
lar n-gon. We have the following picture for any dihedral
group:

Cn ∼= Zn �
�

// D2n
// // Z2

Choose ζ = ζn any primitive nth root of unity. Let h be
a rotation through 2π/n, g any reflection. Then hn = e,
g2 = e, gh = hg, and D2n = 〈h, g〉.

Let V be any irreducible representation. V has an
eigenbasis with respect to h, with eigenvalues ζk. Sup-
pose that v ∈ V is an h-eigenvector,

hv = ζkv

Then

h(gv) = g(h−1v)

= g(ζ−kv)

= ζ−k(gv)

So gv ∈ V is an h-eigenvector with eigenvalue ζ−k. The
subspace 〈v, gv〉 ⊂ V is thus G-invariant, and hence

V = 〈v, gv〉

For now we will only consider n odd. Then dimV = 2
unless k = 0. So suppose that h acts as the identity. If
g = 1, we get the trivial representation U ; if g = −1, we
get the alternating representation U ′.

Note that as with our picture of S3 = D6, if h has
eigenvectors v1 and v2 with eigenvalues ζk and ζ−k, then
g switches them. Thus,

h 7−→

(
ζk 0
0 ζ−k

)
g 7−→

(
0 1
1 0

)

Since we have m = n−1
2 pairs of nontrivial ζk, our char-

acter table is

D2n e h±1 h±2 · · · h±m g
U 1 1 1 · · · 1 1
U ′ 1 1 1 · · · 1 −1
V1 2 ζ + ζ−1 ζ2 + ζ−2 · · · ζm + ζ−m 0
V2 2 ζ2 + ζ−2 ζ4 + ζ−4 · · · ζ + ζ−1 0
...

We return now to the study of induced representa-
tions. We begin with some basic properties.

Proposition 24.3. The operator IndGH satisfies the fol-
lowing properties:

1. Linearity.

IndGH(W1 ⊕W2) = IndGH(W1)⊕ IndGH(W2)

2. Transitivity. For H ≤ K ≤ G,

IndGH(W ) = IndGK(IndKH(W ))

3. Push-Pull. Let U be a representation of G, W a
representation of H.

U ⊗ IndGH(W ) = IndGH(ResGH(U)⊗W )

Proof. We will prove only the push-pull property. U ⊗
IndGHW =: V . U⊗W0 isH-invariant V =

⊕
σ∈G/H σ(U⊗

W0) �

Proposition 24.4. Let U be a representation of G, W a
representation of H ≤ G. Then

HomH(W,ResGH U) = HomG(IndGHW,U)

Proof. We claim that any H-module homomorphism
ϕ : W → U can be uniquely extended to G-module ho-
momorphism ϕ̂ : IndGHW → U . Recall that

V := IndGHW =
⊕

σ∈G/H

σW

Choose any v ∈ σW , which will have the form v = gσw
for some representative gσ. We define ϕ̂ on σW by

ϕ̂(v) = gσϕg
−1
σ (v)

= gσϕg
−1
σ (gσw)

= gσϕ(w)

= ϕ(gσw)

= ϕ(v)

and clearly we have independence of our choice of repre-
sentative gσ. This completes the proof. �
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Corollary 24.5 (Frobenius Reciprocity). If U is a rep-
resentation of G, W a representation of H ≤ G, then

(χW , χResGH U )H = (χIndGHW , χU )G

This is equivalent to the claim

dim(HomH(W,ResGH U)) = dim(HomG(IndGHW,U))

Lecture 25 — 3/28/12

Definition 25.1. Let G be any finite group. Define

R(G) =
{∑

aiVi : Vi rep of G
}
/ 〈V ⊕W − V −W 〉

This is the free abelian group on the isomorphism classes
of irreducible representations of G; note that

R(G) ' Zc

where c is the number of conjugacy classes of G. Addition
on R(G) is given by ⊕, and multiplication ⊗.

Theorem 25.2 (Artin). The representations of G in-
duced from cyclic subgroups of G generate a subgroup of
finite index in R(G).

Theorem 25.3 (Brauer). We say a group H = A×B is
elementary if A is cyclic and B is a p-group with p - |A|.
The representations of G induced from elementary sub-
groups of G generate R(G).

Definition 25.4. The vector space of quaternions is
given by

H = {α1 + α2i+ α3j + α4k : αi ∈ R}

where multiplication is given by

i2 = j2 = k2 = ijk = −1

Note that

H ∼= R4

and hence is a real vector space.

Let us compute the character table for the group of
quaternions

Q = {±1,±i,±j,±k}

We know that {±1}CG is normal, and we have a sequence
of quotient maps

G // // G/{±1} ∼= Z/2× Z/2 // // Z/2

Note that G/{±1} = {1̄, ī, j̄, k̄}. Then the second quo-
tient map kills 1̄ and one of {̄i, j̄, k̄}, sending the remain-
ing two to the nonidentity element of Z/2, which has char-
acter −1. Thus, we get

Q +1 −1 ±i ±j ±k
U 1 1 1 1 1
Ui 1 1 1 −1 −1
Uj 1 1 −1 1 −1
Uk 1 1 −1 −1 1
V 2 −2 0 0 0

We get the final irreducible using orthogonality rela-
tions (also note that if all representations were one-
dimensional, the group would be abelian).

We can identify this representation V as H. We make
H into a two-dimensional complex vector space via com-
plex multiplication on the right. Identifying C = 〈1, i〉,
we can take {1, j} as a basis, whereupon we have

1 = (1, 0) i = (i, 0) j = (0, 1) k = (0,−i)

The elements of Q act via left multiplication on H. Since
H is associative, this is indeed a representation, and we
can check it against our character table.

Definition 25.5. A representation V of G is a real
representation if we can write

V = V0 ⊗R C

with an action of G on V0 that extends by linearity to the
action of G on V . In other words, for some choice of iso-
morphism GL(V ) ∼= GLn C, the representation ρ factors
through GLn R:

G
ρ

//

""

GL(V ) ∼= GLnC

GLn R
* 


77

Let us look at the construction V = V0 ⊗R C more
closely. Say V0 is a real vector space of dimR V0 = n.
Then, taking C as a two-dimensional real vector space,
V = V0 ⊗R C is also a real vector space of dimR V = 2n.
However, V also has the structure of a complex vector
space of dimC V = n, given by

i(v ⊗ λ) = v ⊗ iλ

That is, if we write

V0 = {a1v1 + · · ·+ anvn : ai ∈ R}

we have

V = V0 ⊗R C = {a1v1 + · · ·+ anvn : ai ∈ C}

V is called the complexification of V0. We can see from
this that any g : V → V ∈ G can be represented either
as a complex matrix or as a real matrix with twice the
dimension, if V is a real representation.
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Example. Consider G = Z/3 acting on

V = {(x, y, z) ∈ C3 : x+ y + z = 0}

This representation is real because it breaks into V0⊗RC
for

V0 = {(x, y, z) ∈ R3 : x+ y + z = 0}

We know that V0 ' R; in this interpretation, G acts via
rotation through 120◦. Note that, setting v = (1, ω, ω2)
and w = (1, ω2, ω), we have

V = C 〈v〉 ⊕ C 〈w〉

However, neither of these component vector spaces is real,
so V is irreducible as a real representation.

Observation 25.6. Note that real representations have
real character, but the converse is not true. For instance,
the representation V of the quaternion group has real
character, but is not real.

Definition 25.7. A symmetric bilinear form on a vector
space V is a map

B : V × V → C

such that, ∀u, v, w ∈ V , ∀λ ∈ C,

1. B(u+ v, w) = B(u,w) +B(v, w)

2. B(λv,w) = λB(v, w)

3. B(u, v) = B(v, u)

A bilinear form yields a map

αB : V −→ V ∗

v 7−→ B(v, ·)

which takes a vector v to B pre-parametrized with v as
an argument. We say that B is nondegenerate if this map
αB is an isomorphism.

Recall that if V is a representation of G, then V ad-
mits a positive definite Hermitian inner product H which
is G-invariant; we took any H0 and then averaged, yield-
ing

H(v, w) =
1

|G|
∑
g∈G

H0(gv, gw)

We would like to know whether we can also find a non-
degenerate symmetric bilinear form B on V . Note that,
if we try to choose B0 and average, we get

B(v, w) =
1

|G|
∑
g∈G

B0(gv, gw)

But note that B0 cannot be positive definite over C, since,
for instance,

B0(iv, iw) = −B0(v, w)

We do not want B to be trivially zero anywhere, so we
demand nondegeneracy. As it turns out, this is true if
and only if V is real (since B0 can be positive definite on
the real vector space V0).

Lecture 26 — 3/30/12

Let V be an irreducible representation of a finite group
G. We know there exists a G-invariant positive definite
Hermitian form H : V ×V → C on V . That is, H satisfies

H(gv, gw) = H(v, w), ∀g ∈ G, ∀v, w ∈ V

We wish to determine whether there also exists a G-
invariant nondegenerate symmetric bilinear form B :
V × V → C on V . Every bilinear form gives a map

αB : V −→ V ∗

v 7−→ B(v, ·)

That B is nondegenerate means that αB is an isomor-
phism; that B is G-invariant means

B(gv, gw) = B(v, w), ∀g ∈ G, ∀v, w ∈ V

Theorem 26.1. An irreducible representation V of a fi-
nite group G admits a nondegenerate G-invariant sym-
metric bilinear form iff V is a real representation.

Proof. We begin with the following claim:

Lemma 26.2. B is G-invariant iff αB is a G-module
homomorphism.

Proof. To be a G-module homomorphism, by the defini-
tion of the dual representation, αB must satisfy

αB(gv) = gt −1αB(v)

αB(gv) and gt −1αB(v) are respectively maps

w 7−→ B(gv, w) w 7−→ B(v, g−1w)

Clearly, these are equal iff B is G-invariant.

Note that

Hom(V, V ∗) = V ∗ ⊗ V ∗ = Sym2 V ∗ ⊕ ∧2 V ∗

so every bilinear form is a sum of a symmetric bilinear
form with a skew-symmetric bilinear form. Since V is ir-
reducible, this means that B must either be symmetric or
skew-symmetric. We then have have one of the following
three cases:

1. V 6∼= V ∗, so there does not exist any nondegenerate
G-invariant bilinear form on V

37



Math 123—Algebra II Max Wang

2. V ∼= V ∗ through a nondegenerate G-invariant sym-
metric bilinear form

3. V ∼= V ∗ through a nondegenerate G-invariant skew-
symmetric bilinear form

We also know that

dim(HomG(V, V ∗)) =
1

|G|
∑
g∈G

χV (g)
2

If the character is real, then this dimension must be

nonzero because each summand χV (g)
2

= χV (g)2 will
be positive. Hence, a real character implies that we are
in either case 2 or case 3. Meanwhile, a complex character
means we will be in case 1.

Our theorem then reduces to the following lemma:

Lemma 26.3. V is real iff we have case 2.

Proof. First suppose that V is real. This direction is easy.
We have V = V0 ⊗R C, so we can find a positive definite
symmetric bilinear form B0 on V0 and make it G-invariant
by averaging. We then simply extend this by linearity to
a form B on V .

Now consider the reverse direction. Suppose we have a
nondegenerate G-invariant symmetric bilinear form B on
V . Let H be any positive definite G-invariant Hermitian
form. As with B, this yields a map

αH : V −→ V ∗

v 7−→ H(v, ·)

Note, however, that unlike αB which is linear, the map
αH is conjugate linear.

Take the composition

ϕ : V
αB−−→ V ∗

α−1
h−−−→ V

which is an automorphism of V . Now consider ϕ2 : V →
V , which is a complex linear G-module homomorphism.
By Schur’s lemma,

ϕ2 = λI

Moreover, we can see by our construction that, ∀v, w ∈ V ,
ϕ satisfies

H(ϕ(v), w) = B(v, w)

= B(w, v)

= H(ϕ(w), v)

= H(v, ϕ(w))

So for ϕ2, we have

H(ϕ2(v), w) = H(v, ϕ2(w))

H(λv,w) = H(v, λw)

Then λ = λ̄ and hence λ is real (and positive).
Multiplying B by a scalar, we can assume λ = 1. Then

ϕ : V → V is a real linear map, but ϕ2 = I. Hence, it
has has eigenvalues 1 or −1 So we can decompose

V = V + ⊕ V −

where V + is the ϕ2-eigenspace of eigenvalue 1, and V − is
that of eigenvalue −1. Note that v ∈ V + means ϕ(v) = v,
so

ϕ(iv) = −iϕ(v)

Then we have iV + = V −, and therefore we can write
V = V + ⊗R C, as desired.

We have actually proven a stronger theorem, which
we state as:

Theorem 26.4. An irreducible representation V of G is
one and one of the following:

1. Complex. χV is not real, and V does not admit a
G-invariant nondegenerate bilinear form.

2. Real. V is a real representation, χV is real, and
V admits a G-invariant nondegenerate symmetric
bilinear form.

3. Quaternionic. V is a real representation, χV is real,
and V admits a G-invariant nondegenerate skew-
symmetric bilinear form.

Note that unlike over the complex numbers, when we
work over the real numbers, we can’t easily determine the
number of representations. About all we can state in gen-
eral is that the complex representations come in cojugate
pairs. �

Lecture 27 — 4/2/12

Definition 27.1. A module M over a ring8 R is an
abelian group with a scalar multiplication map

R×M −→ R

(r, x) 7−→ rx

satisfying the usual axioms ∀r, s ∈ R, ∀x, y ∈M ,

• r(sx) = (rs)x

• 1 · x = x

• (r + s)x = rx+ sx

• r(x+ y) = rx+ ry

Example.

8Any ring R we consider will be commutative with identity unless otherwise specified.
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1. R is a module over R, r · s = rs.

2. The product

Rn = {(x1, . . . , xn) : xi ∈ R}

is a module given by the rule

r(x1, . . . , xn) = (rx1, . . . , rxn)

A module of this form is called a free module.

Definition 27.2. A submodule N ⊂M over R is a sub-
group closed under scalar multiplication.

R×M −→M

∪ ∪
R×N −→ N

Definition 27.3. If N ⊂M is a submodule, the quotient
module M/N is the quotient group together with scalar
multiplication rule

rx = rx

Observation 27.4. The submodules of the module M =
R are the ideals in R.

Definition 27.5. An R-module homomorphism ϕ :
M → N is a group homomorphism that commutes with
scalar multiplication

ϕ(rx) = rϕ(x)

Observation 27.6. The kernel ker(ϕ) is a submodule of
M , and likewise the image im(ϕ) is a submodule of N .

Definition 27.7. Let M , N be R-modules. The direct
sum of modules is given by

M ⊕N = {(x, y) : x ∈M,y ∈ N}

with scalar multiplication given by

r(x, y) = (rx, ry)

Definition 27.8. Let M , N be R-modules. The tensor
product of modules is a R-module M ⊗N with an asso-
ciated bilinear map

ϕ : M ⊕N −→M ⊗N
(x, y) 7−→ x⊗ y

such that every bilinear map ψ : M × N → P for an
R-module P factors uniquely through ϕ:

M ×N
ψ

//

ϕ
%%

P

M ⊗N
α

;;

where α is an R-module homomorphism.

Note that for free modules, we have

Rm ⊕Rn = Rm+n

Rm ⊗Rn = Rmn

Definition 27.9. Let M be an R-module, x1, . . . , xn ∈
M . We have a map ϕ : Rn →M given by

(a1, . . . , an) 7−→ a1x1 + · · ·+ anxn

We say that x1, . . . , xn are generators of M if ϕ is sur-
jective. We say M is finitely-generated if there exists a
finite set of generators.

Example. Let us consider some modules over Z.

1. Z, Zn, and the algebraic integers are all Z-modules.

2. Let M be any Z-module. Then

mx = x+ · · ·+ x︸ ︷︷ ︸
m

That is, the module structure is determined by the
group structure. We thus get a bijection between
abelian groups and Z-modules.

3. 2Z ⊂ Z is a submodule of Z; moreover,

2Z ∼= Z

as Z-modules, since we have

Z ∼−→ 2Z
m 7−→ 2m

We get Z/2 as a the quotient module Z/2Z.

4. We claim that Z/2⊗ Z/3 = (0). For we have

2(1⊗ 1) = 2⊗ 1 = 0

3(1⊗ 1) = 1⊗ 3 = 0

Then

1⊗ 1 = 3(1⊗ 1)− 2(1⊗ 1) = 0

Note that this situation could never occur in a vec-
tor space.

Definition 27.10. Let S be any set. Then the free
module generated by S is given by

RS = {a1s1 + · · ·+ ansn : ai ∈ R, si ∈ S}

In general, given x1, . . . , xn ∈ M , we say they generate
M if

R{xi} −�M
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Lecture 28 — 4/4/12

Definition 28.1. Let R be a ring. Define

Mn(R) = {n× n matrices (aij) : aij ∈ R}
= Hom(Rn, Rn)

' Rn
2

Let GLn(R) ⊂ Mn(R) be the subset of invertible matri-
ces; that is,

GLn(R) = {A ∈Mn(R) : ∃B ∈Mn(R), AB = In}
= Aut(Rn)

Definition 28.2. Let A ∈Mn(R) with entries (aij). The
determinant of the matrix A is given by

detA =
∑
σ∈Sn

sgn(σ) · a1,σ(1) · · · an,σ(n)

Observe that

det(AB) = det(A) · det(B)

Theorem 28.3. A ∈ Mn(R) is an isomorphism (i.e.,
invertible) iff detA is a unit in R.

Proof. First, suppose A is invertible. Then AA−1 = In,
so we have

det(A) · det(A−1) = 1

from which it follows that detA is a unit.
Now let cof(A) be the matrix of cofactors of A. We

know that
A · cof(A) = det(A) · I

since detA is a unit, it has an inverse b ∈ R, and hence
b · cof(A) is our desired inverse to A. �

We will denote the basis of Rn by {e1, . . . , en}, where

ei = (0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0)

Recall that

Definition 28.4. We say that v1, . . . , vk ∈M generate a
module M if every v ∈ M is a linear combination of the
vi. Equivalently, the vi generate M if the map

ϕ : Rk −→M

ei 7−→ vi

is surjective. We say the vi are linearly independent if∑
aivi = 0 =⇒ ai = 0,∀i

or equivalently, if ϕ is injective. A linearly independent
generating set is a basis for M .

Observation 28.5. Note that modules exhibit patholog-
ical behavior as compared to vector spaces.

1. Not every module has a basis; for instance, Z/n as
a Z-module.

2. Even if a module M has a basis, (e.g., a free mod-
ule M ∼= Rn), it is not the case that every linearly
independent set can be extended to a basis. For
instance, take M = Z as a Z-module; the vector
v1 = 2 cannot be made a part of a basis. That is,
we have a Z-module homomorphism

Z 2x−→ Z

that is injective without being surjective.

Similarly, if M = Z × Z, the vectors v1 = (1, 1),
v2 = (1,−1) are independent, but cannot be ex-
tended to a basis.

3. It is also not the case that every generating set con-
tains a basis. For instance, v1 = 2 and v2 = 3
generate M = Z but do not contain a basis.

These pathologies make it impossible for modules to have
a well-defined notion of dimension.

In general, a module M is free iff it has a basis (not
necessarily a finite one).

Definition 28.6. If a module M has a basis v1, . . . , vn
(i.e., M = Rn), we say that n is the rank of M .

Note that a module can have rank 0 without being
the zero module (for instance, in Z/n).

Lemma 28.7. If a module M has a basis, then any two
bases of M have the same cardinality. It follows also that
if n 6= m, then Rn 6∼= Rm.

Let M be a finitely-generated free module with basis
v1, . . . , vk. Then we have a natural isomorphism M ∼= Rk

given by

ϕ : Rk −→M

ei 7−→ vi

If v′1, . . . , v
′
k is another basis, we can write

v′i =
∑

aijvj

for some aij ∈ R. Then we have

Rk
ϕ
//

P
��

M

Rk
ϕ′
// M
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where P = (aij) is called the change of basis matrix.
Now we can identify

Hom(Rn, Rm) = Mm×n(R)

For suppose M and N are free modules with ranks m and
n respectively, ϕ : N →M an R-module homomorphism.
Let us choose respective bases v1, . . . , vm and w1, . . . , wn.
Then we get an m× n matrix

Rn
∼ //

��

N

ϕ

��

Rm
∼ // M

which gives us Hom(N,M) = Mm×n(R).

Definition 28.8. The cokernel of an R-module homo-
morphism ϕ : M → N is defined as

cokerϕ = N/ imϕ

We would like now to determine the kernel and coker-
nel of a homomorphism ϕ : Rn → Rm. The issue is that,
while the kernel is again a free module (as we will show),
the cokernel need not be. For instance,1 2 3

4 5 6
7 8 9

 : Z3 −→ Z3

Lecture 29 — 4/6/12

Let V and W be free modules with bases v1, . . . vn and
w1, . . . , wm. We can express anR-module homomorphism
ϕ : V →W as a matrix A = (aij) with

Avj =


a1,1 · · · a1,n

...
. . .

...

am,1 · · · am,n





0
...
1
0
...


=


a1,j

...

am,j


That is, we have

ϕ(vj) =
∑

aijwi

Now suppose that we choose different bases {v′j} and {w′i}
for V and W . Then in terms of these bases, ϕ corresponds
to the matrix

ϕ ' Q−1AP

where P is the change of basis matrix for {vj} → {v′j}
and Q is likewise for {wi} and {w′i}.

We now pose the following question: given a homo-
morphism ϕ, how can we find bases that make this ma-
trix as simple as possible? Equivalently, given a matrix,
can we find Q ∈ GLm(R) and P ∈ GLn(R) such that
Q−1AP has a particularly simple form? Were V and W
vector spaces, we would have such simple matrix forms;
however, for modules, in general, the answer here is no.
In the case of R = Z, however, we have a nicer picture:

Theorem 29.1. Let V and W be free modules over Z,
ϕ : V → W a Z-module homomorphism. Then there ex-
ist bases {vj}nj=1 for V and {wi}mi=1 for W such that the
matrix representation A of ϕ is the block matrix(

D 0
0 0

)
where D has the form

D =


d1 0

d2
. . .

0 dk


such that ∀i < k, di |di+1.

Proof. For every m×n matrix A, we want Q and P such
that Q−1AP has the desired form. We will construct Q
and P using a set of elementary matrices (analogous to
those from linear algebra). These have the form

1
. . .

1 c
. . .

1
. . .

1


where c ∈ Z is in the i, j-th place; this adds the ith col-
umn of A scaled by c to the jth column (via multiplication
on the right);

1
. . .

0 1
. . .

1 0
. . .

1


41



Math 123—Algebra II Max Wang

which is the identity matrix with the ith and jth columns
swapped; this interchanges columns i and j of A; and fi-
nally 

1
. . .

1
−1

1
. . .

1


which negates the ith column (note that unlike in a field,
we cannot scale by arbitrary constants, since only ±1 are
units; other constants would yield an uninvertible deter-
minant). Note that we have analogous row operations
resulting from left-multiplication.

First, want to arrive at a matrix which has the form
d 0 · · · 0
0
... M
0


where d divides every entry of M . We can carry out the
Euclidean algorithm via our elementary row operations on
any two row headers to make one of them the gcd of the
two. Therefore, we can arrive at a matrix with a1,1 |ai,1
for all i (that is, a1,1 divides all the row headers). We can
then subtract a multiple of the first row from every other
row to arrive at a matrix of the form

a1,1 a1,2 · · · a1,n
0
...

. . .

0


If a1,1 does not divide all column headers, we can make
a1,1 the gcd of all the column headers using column op-
erations. Of course, this undoes all the work we have
performed on the row headers, and after zeroing out the
column headers, we must repeat the (very inefficient) al-
gorithm from the beginning. Since a1,1 either gets strictly
smaller or divides all headers at the beginning of each rep-
etition of the algorithm, the algorithm terminates.

This is almost what we want; we still want the sub-
matrix M to contain only entries which are multiples of
a1,1. Suppose M has an entry ai,j which a1,1 does not
divide. We can use row or column operations to bring
ai,j to the first column or row (recall that all the headers
are 0). By repeating our algorithm, since a1,1 must get
smaller each time (or becomes equal to 1), this process
eventually stops with our desired matrix.

Recursing on the submatrix M completes our
proof. �

We have shown that for Z-modules V and W and any
homomorphism ϕ : V →W , we can represent ϕ, for some
choices of bases, by

A =




d1 0

d2
. . .

0 dk

 0

0 0


Note that A takes ei 7→ d1e1 for i ≤ k and ei 7→ 0 for
i > k. Thus, we have

ker(ϕ) ∼= Rn−k and im(ϕ) ∼= Rk

Specifically, the image of ϕ is spanned by vectors diw
′
i for

i ≤ k (where {w′i} ∈ W is the changed basis) Combined,
these observations give us:

Corollary 29.2. If ϕ : V → W is a homomorphism of
free Z-modules, then ker(ϕ) and im(ϕ) are free. The cok-
ernel is

coker(ϕ) = Z/d1 ⊕ · · · ⊕ Z/dk ⊕ Zm−k

Lemma 29.3. If W ⊂ Zm is any submodule, then W is
free.

Proof. We will assume for now (and prove later) that W
is finitely generated. So suppose that w1, . . . , wn are gen-
erators of W ⊂ Zm. This gives us a map Zn → Zm which
sends the ith basis vector to a generator wi. The image
of this map is W , and hence W is free as desired. �

Corollary 29.4. Any finitely-generated abelian group G
is of the form

G = Za ⊕ Z/d1 ⊕ · · · ⊕ Z/dk di |di+1,∀i

Proof. Equivalently, we know that G is a finitely-
generated Z-module. Choosing a set of generators
v1, . . . , vm, we get a map Zm −� G sending the ei 7→ vi.
The kernel, being free, is isomorphic to some Zn. Hence,
G is the cokernel of the inclusion Zn → Zm, which yields
our desired result. �

Lecture 30 — 4/9/12

We return briefly to a claim we made in a previous lec-
ture, that over an arbitrary ring R, matrices A,B ∈MnR
satisfy

det(A) · det(B) = det(AB)
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Let us begin by replacing these matrices with variable
matrices X = (xij) and Y = (ykl). What we wish to do
is prove that the identity

det(X) · det(Y ) = det(XY )

holds; we can then substitute elements of any ring R for
the entries of X and Y .

We define this substitution relative to Z[{xij}, {ykl}],
the polynomial ring over the integers in 2n2 variables.
There is a unique homomorphism Z → R for any ring
R, which yields, given some matrices A,B ∈ MnR, the
substitution homomorphism

Z[{xij}, {ykl}] −→ R

sending xij 7→ aij and ykl 7→ bkl.
But since the determinant function respects ring ho-

momorphism, if our identity holds in Z, it holds in any
ring R. Now consider the inclusion

Z[{xij}, {ykl}] ⊂ C[{xij}, {ykl}]

and the polynomial

f(xij , yij) = det(X) · det(Y )− det(XY )

We already know that, in C, the polynomial function f
satisfies

f(xij , yij) = 0, ∀xij , yij ∈ C

But then f = 0 as a polynomial over C, and hence also
as a polynomial over Z.

Observation 30.1. Recall now our corollary, that any
finitely-generated abelian group G is of the form

G = Za ⊕ Z/d1 ⊕ · · · ⊕ Z/dk di |di+1,∀i

It is also true for this decomposition that the a and di are
all unique. Note that

a = dimQ(G⊗Z Q)

Since, if α ∈ G, we have diα = 0, and so

α⊗ 1 = diα⊗
1

di
= 0

Observation 30.2. Note also that our proof of the di-
agonalization of matrices in Z applies equally well to any
Euclidean domain. That is, for any Euclidean domain R,
any matrix in MnR can be diagonalized as


d1

. . .

dk


0



In non-Euclidean domains, however, this does not hold.
In the case of R = F [x, y], for example, R contains the
ideal I = (x, y), which is not a free module. Then the map
ϕ : R −� R/(x, y) cannot be diagonalized as a matrix,
for then I = ker(ϕ) would be free.

Definition 30.3. Let R be a ring, ϕ : Rn → Rm a ho-
momorphism of finitely-generated free R-modules. Given
some choice of basis for Rn and Rm, we can represent ϕ
by a matrix

A =


a1,1 · · · a1,n

...
. . .

...
am,1 · · · am,n


Consider the module

M = coker(ϕ) = Rm/ im(A)

with quotient map

ψ : Rm −→M

ei 7−→ vi

for the corresponding residues vi ∈ M . Clearly, M is
generated by the vi; moreover, each column of A gives a
relation

a1,jv1 + am,jvm = 0

Conversely, every linear relation among the vi is a linear
combination of these. So M is fully determined by the vi
along with these relations; we call A the presentation of
M .

To obtain a presentation for our module M , we ex-
plicitly defined it as the cokernel of a map between free
modules. Suppose that we instead took any arbitrary R-
module M—what conditions must we impose to obtain a
presentation?

Obviously, we must restrict our attention to finitely-
generated modules. In this case, we can choose genera-
tors v1, . . . , vm for M ; this gives us a map ψ : Rm −�M .
Then the relations on M are precisely those elements of
the kernel ker(ψ). However, if we want to obtain a pre-
sentation, this kernel must be finitely generated as well.

If it is, we can choose generators u1, . . . , un for ker(ψ);
this gives us a map ϕ : Rn → Rm with coker(ϕ) = M .
Note that the ker(ψ) itself need not be free, but it must
be finitely generated for us to determine Rn.

How, then, can we tell if ker(ψ) is finitely generated?
This is a hard question to answer, since the map ψ already
depends on the choice of generators for M . Instead, we
impose further restrictions on the base ring R.

Definition 30.4. A ring R is Noetherian if any ideal
I ⊂ R is finitely-generated.
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Proposition 30.5. Let R be a Noetherian ring, M a
finitely-generated R module. Then any submodule of M
is again finitely-generated.

Lecture 31 — 4/11/12

Theorem 31.1. Let R be a ring, M a module over R.
Then the following are equivalent:

1. Every submodule of M is finitely-generated.

2. Any infinite sequence

M1 ⊂M2 ⊂ · · · ⊂M

of submodules of M eventually stabilizes; that is,
∃n0 : ∀n,m ≥ n0, Mn = Mm. This second condi-
tion is called the ascending chain condition.

Definition 31.2. A Noetherian module is an R-module
satisfying the above condition.

Proof. The reverse direction is easy. Suppose N ⊂M is
not finitely-generated. Then we claim that we can con-
struct an infinite, non-stabilizing sequence

M1 (M2 (M3 ( · · ·

Start with any v1 ∈ N , and take M1 = 〈v1〉. Then choose
v2 ∈ N −M1, and take M2 = 〈v2〉. Because N is not
finitely-generated, we can always find such an element vi;
we achieve our desired sequence by induction.

Suppose now that we have an infinite sequence M1 ⊂
M2 ⊂ · · · ⊂M . Set

N =
⋃
Mi ⊂M

This is a submodule of M , and hence is finitely-generated.
Choose generators v1, . . . , vk for M . For each i, there
must exist some index ni such that ∀n ≥ ni, Mn 3 vi.
Then there is some module Mn0

in the chain (with
n0 = max{ni}) such that every Mi ⊃ Mn0

in the chain
contains all the vi. But then we have Mi = N for every
i > n0. Thus, the chain stabilizies, which completes our
proof. �

Theorem 31.3. If R is a Noetherian ring, then every
finitely-generated R-module M is Noetherian.

Proof. We will start with the case M = Rn for some
n. Our base case for n = 1 is true by assumption; we
proceed by induction. Let N ⊂M be any submodule; we
want to show that N is finitely-generated. Consider the
projection map

ϕ : Rn −→ Rn−1

(x1, . . . , xn−1, xn) 7−→ (x1, . . . , xn−1)

By our induction hypothesis, the image module ϕ(N) ⊂
Rn−1 is finitely-generated. Choose generators v1, . . . , vk,
and choose also representatives vi ∈ N such that ϕ(vi) =
vi. Then, ∀v ∈ N , we can write

ϕ(v) =
∑

civi, ci ∈ R

Consider the corresponding linear combination of the vi;
we can see that

v −
∑

civi ∈ ker(ϕ)

But ker(ϕ) ⊂ R. Since R is Noetherian, ker(ϕ) is finitely-
generated; choose generators w1, . . . , wl. Then we can
write any element N as a linear combination of the vi
and the wj .

Now let M be any arbitrary finitely-generated R-
module, not necessarily free. Let ϕ : Rn −� M be
the canonical map taking ei to some n generators of
M , and let N ⊂ M be any submodule. By the above,
ϕ−1(N) ⊂ Rn is finitely-generated; choose generators
v1, . . . , vm. Then N is generated by ϕ(v1), . . . , ϕ(vm),
which completes our proof. �

Note that “finitely-generated” has a different mean-
ing depending on whether we are speaking about rings or
modules. For instance, the ring

Z[ 12 ] =

{
a

2n
: a ∈ Z, n ∈ N

}
⊂ Q

is finitely-generated over Z as a ring, but not as a module.
As a module, multiplication is only defined with respect
to the base ring Z, so no finite number of generators will
yield all the inverse powers of 2.

Lemma 31.4. Let R be a Noetherian ring. Then for any
ideal I ⊂ R, the quotient R/I is Noetherian.

Proof. Let ϕ : R → R/I be the quotient map. Let
J̄ ⊂ R/I be any ideal in R/I. Then J = ϕ−1(J̄) is an
ideal inR. By assumption, J is finitely-generated. Choos-
ing generators v1, . . . , vk, we see that J̄ is generated by
ϕ(v1), . . . , ϕ(vk). �

Note that we can obtain presentations for any finitely-
generated module M over a Noetherian ring R. That is,
every R-module where R is Noetherian is the cokernel of
a map ϕ : Rn → Rm.

Theorem 31.5 (Hilbert Basis Theorem). Let R be a
Noetherian ring. Then the ring R[x1, . . . , xn] is Noethe-
rian.
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Proof. Since we obtain R[x1, . . . , xn] by adjoining xn to
R[x1, . . . , xn−1], it suffices to prove the theorem for R[x].
Let I ⊂ R[x] be any ideal. For every f ∈ R[x] of the form
f = anx

n + · · ·+ a0, with an 6= 0, we define

lc(f) = an

This is notation for the leading coefficient of f .
Now consider the set

A = {lc(f) : f ∈ I} ∪ {0}

We claim that A is an ideal in R. This is fairly easy to
see. Let α, β ∈ A, with α = lc(f) and β = lc(g). Take
any c ∈ R; if cα 6= 0, then

cα = lc(cf)

and hence A absorbs multiplication in R. To show
that A is closed under addition, suppose WLOG that
deg f ≥ deg g. Then we also have β = lc(xdeg f−deg g · g),
and hence

α+ β = lc(f + xdeg f−deg g · g)

(unless, of course, α+ β = 0).
Since A ⊂ R, it is finitely-generated. So let us

choose generators α1, . . . , αk for A along with polyno-
mials f1, . . . , fk ∈ I with lc(fi) = αi. Take n =
max{deg fi}. WLOG, we can assume the fi all have the
same degree by multiplying each fi by xn−deg fi .

Now set

P0 = {f ∈ R[x] : deg f ≤ n}

This is a free module over R, isomorphic to Rn+1 (it is,
however, clearly not a ring). Let also

P = P0 ∩ I = {f ∈ I : deg f ≤ n}

This is a submodule of P0; hence, P is finitely-generated
as an R-module. Let us choose generators g1, . . . , gl for
P . We claim now that {fi} ∪ {gj} together generate I.

We prove this by induction on degree. Let f ∈ I. If
deg f ≤ n, then f ∈ P and we are done; this is our base
case. Suppose deg f > n. We can write lc(f) as a linear
combination

lc(f) =
∑

ciαi

which corresponds to a linear combination of the fi.
Then, if we take

g = f −
∑

ci(x
deg f−nfi)

since deg g < deg f , by the induction hypothesis, g is ex-
pressible as a linear combination of the fi and gj , and
therefore so is f . �

Definition 31.6. We say that a ring R is
finitely-generated over a field K if K ↪−→ R and if
∃v1, . . . , vk ∈ R such that

K[x1, . . . , xk] −� R

by the evaluation homomorphism.

Corollary 31.7. Any finitely-generated ring over a field
or Z is Noetherian.

Lecture 32 — 4/13/12

Definition 32.1. A sequence of R-module homomor-
phisms

Mn
ϕn−−→Mn−1

ϕn−1−−−−→Mn−1 −→ · · · −→M1
ϕ1−−→M0

is called exact if

∀k < n, kerϕk−1 = imϕk

We say a sequence is a complex if

∀k < n, ϕk−1 ◦ ϕk = 0

that is, if imϕi ⊂ kerϕi−1. In this case, the quotients
(kerϕk−1)/(imϕk) are called the cohomology modules.

Definition 32.2. A short exact sequence is an exact se-
quence of the form

0 −→M −→ N −→ P −→ 0

As a result M ↪−→ N is an injection, and P = N/M .

Example. Let R = Z. Let M be a finitely-generated
Z-module; hence, we get a map ψ : Zm → M onto M ’s
generators. We know that ker(ψ) ∼= Zn for some n is free.
This yields a short exact sequence

0 −→ Zn −→ Zm −→M −→ 0

Similarly, take R = F [t]. Any finitely-generated mod-
ule R-module M is the cokernel of some map

0 −→ Rn
ϕ−→ Rm −→M −→ 0

Since F [t] is a Euclidean domain, we can obtain a diago-
nalized presentation

M ∼= Ra ⊕R/(d1)⊕R/(d2)⊕ · · · ⊕R/(dk)

where di ∈ F [t] and ∀i, di |di+1.
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Example. Let R = F [x, y] for some field F and let
M = R/(x, y) ∼= F . Consider the quotient map

π : F [x, y] −→ F

f 7−→ f(0, 0)

which has ker(π) = (x, y). (x, y) is generated by x and
y, so we have a natural map ϕ : R2 → (x, y) mapping
the standard basis onto the generators. Thus, we have an
exact sequence

R2
ϕ
−� (x, y) ↪−→ R

π−→ F

The kernel of ϕ is given by

ker(ϕ) = {(f, g) : xf + yg = 0}

Since xf = −yg, y | f and likewise x | g. We can write
f = yf ′ and g = xg′. But then substituting, we get that
xyf ′ = −xyg′. If we set h = g′, then we have f = −yh
and g = xh, which means that

ker(ϕ) = {(−yh, xh)}

This gives a natural map ψ : R→ R2 given by the matrix

ψ =

(
−y
x

)
It is easy to see that ker(ψ) = 0, and hence we have an
exact sequence

0→ R
ψ−→ R2 ϕ−→ R

π−→ F → 0

Now let R = F [x1, . . . , xr], M a finitely-generated R-
module. We know that there exists a surjection ϕ0 :
M0 → M where M0

∼= Rm0 . Since M0 is Noetherian,
ker(ϕ0) is finitely-generated. Choosing a set of m1 gen-
erators of this kernel, we get

M1
ϕ1−−→M0

ϕ0−−→M −→ 0

where M1
∼= Rm1 .

Theorem 32.3 (Hilbert Syzygy Theorem). The process
described above terminates after at most r steps. In gen-
eral, this is called a free resolution of M .

Lecture 33 — 4/16/12

In general, if M is an R-module over a Noetherian ring
R, it can be realized as the cokernel of a homomorphism
of free modules. Moreover, M has a free resolution.

Example. Let R = F [t] for F a field. Consider the ma-
trix

A =

(
t2 − 3t+ 1 t− 2

(t− 1)3 t2 − 3t+ 2

)

The R-module given by M = coker(A), that is, presented
by A, is generated by two elements v, w with

(t2 − 3t+ 1)v + (t− 1)3w = 0

(t− 2)v + (t2 − 3t+ 2)w = 0

Unfortunately, this doesn’t give us much insight into the
module’s structure.

However, we can diagonalize A as

A =

(
1 0
0 t3 − 3t2 + 2t

)
from which we have

M = coker(A) = F [t]/(t3 − 3t2 + 2t)

We can factor t3− 3t2 + 2t = t(t− 1)(t− 2), which means
we can further decompose

M = F [t]/(t)⊕ F [t]/(t− 1)⊕ F [t]/(t− 2)

Each of these direct summands is congruent to F .

Observation 33.1. Note that, in general for modules
over a Euclidean domain, we can arrange for the di in the
diagonalization to be prime powers rather than dividing
one another in sequence. If R = F [t], can require di = faii
where the fi ∈ F [t] are irreducible. In the special case
F = C, can take each di = (t− ci)ai

We will now turn briefly to the study of modules in
relation to vector spaces and linear operators. Let V be
an n-dimensional vector space over F , T : V → V a lin-
ear map. We can give the group V the structure of an
F [t]-module by defining

t · v = Tv

Then we have f(t) · v = [f(T )]v. Since V is finite-
dimensional, it is finitely-generated over F [t].

In the case F = C, we can decompose

V ∼= C[t]/(t− c1)a1 ⊕ · · · ⊕ C[t]/(t− cn)an

Each of the direct summands Vi is a submodule of V over
F [t] as well as a vector space invariant under T .

Definition 33.2. A module which is generated by one
element is called cyclic.

In the case of F [t], modules of the form F [t]/(f) are
all cyclic.

Consider a single direct summand V := C[t]/(t− c)a,
which is also an a-dimensional vector space over C. We
can choose a basis 1, t, t2, . . . , ta−1 for V . The linear map
T is defined by left-multiplication by t. For each basis vec-
tor vi, we simply have tvi = vi+1 except for va−1 = ta−1,
where we have

ta = −
a−1∑
i=0

(
a

i

)
ca−iti
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Definition 33.3. With respect to the choice of basis
{1, t, t2, . . . , ta−1}, the matrix for T is given in rational
canonical form,

T =



0 −a0
1 0 −a1

1
. . . −a2
. . . 0

...
1 0 −an−2

1 −an−1


Alternatively, we can choose our basis {vi} to be

1, t − c, (t − c)2, . . . , (t − c)a−1. Multiplication by t, or
equivalently, application of T , is given by

v0 7−→ v1 + cv0

v1 7−→ v2 + cv1

...

va−2 7−→ va−1 + cva−2

va−1 7−→ cva−1

Definition 33.4. With respect to the choice of basis
{1, t−c, (t−c)2, . . . , (t−c)a−1}, the matrix for T is given
in Jordan normal form,

T =


c
1 c

1 c
. . .

. . .

1 c


We are able to achieve the rational canonical form

for arbitrary fields F , in which case the coefficients in
the rightmost column will be in F . However, we cannot
achieve Jordan normal form for vector spaces over arbi-
trary F . Note also that R = Z[t] does not exhibit the
same behavior as R = F [t], so this discussion does not
hold.

Lecture 34 — 4/18/12

Theorem 34.1 (Bezout’s Theorem). Let f, g ∈ C[x, y]
be relatively prime, and say m = deg(f), n = deg(g).
Define

Γ = {(x, y) : g(x, y) = f(x, y) = 0}
Then #Γ ≤ mn.

Claim 34.2. Let f, g ∈ C[t] of degrees m and n respec-
tively, with

f(t) = amt
m + · · ·+ a0

g(t) = bnt
n + · · ·+ b0

Then there exists a polynomial

P (a0, . . . , am, b0, . . . , bn)

such that P (a, b) = 0 iff f and g have a common zero.

Proof. Note that f and g have a common zero iff

(f, g) = {af + bg : a, b ∈ C[t]} ( C[t]

Let

Sk = {f ∈ C[t] : deg(f) ≤ k} ∼= Ck+1

Consider the map

ϕ : Sn−1 × Sm−1 −→ Sm+n−1

(a, b) 7−→ af + bg

If f and g have a common zero, then ϕ is not surjec-
tive. Suppose they do not have common zeros. Then if
af + bg = 0, every zero of f must also be a zero of b, and
likewise for g and a. Then a = b = 0, meaning that ϕ is
injective and hence an isomorphism.

Now choose a basis 1, t, t2, . . . , tm+n−1 for Sm+n−1,
(1, 0), (t, 0), . . . , (tm+n−1, 0), (0, 1), (0, t), . . . , (0, tm+n−1)
for Sn−1 × Sm−1. We can define

P (a0, . . . , am, b0, . . . , bn) = det(A)

where A is the matrix representing ϕ of the form

A =



a0 0 b0 0
a1 a0

...
. . .

... a1
. . .

... b0

am
...

. . . a0
...

...

am
. . . a1 bn

...
. . .

...
. . .

...

0 am 0 bn


Then P (a, b) = 0 iff ϕ is nonisomorphic, which is the case
iff f and g have common zeros, as desired. �

Proof. (of Bezout’s Theorem) We can write

f(x, y) = am(x)ym + · · ·+ a0(x)

g(x, y) = bn(x)yn + · · ·+ b0(x)

For how many values of x is it the case that f and g have
common zeros? Consider our matrix A now where all the
entries are viewed as polynomials in x. Then the set of x
such that f(x, y) and g(x, y) have common zeros is just
the zeros of det(A). Then since deg(ai(x)) ≤ m − 1 and
deg(bj(x)) ≤ n− 1, we have deg(det(A)) ≤ mn. �
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Lecture 35 — 4/20/12

In the final lecture, we will revisit field theory by dis-
cussing the separability of fields.

Definition 35.1. Let F be a field, f ∈ F [x] with
deg(f) = n. We say that f has distinct roots if f
has n distinct roots in its splitting field. Equivalently,
∀F ↪−→ K, α ∈ K, (x− α)2 -f ∈ K[x].

Observation 35.2. Note that the property of having
distinct roots is independent of the ground field F ; that
is, for any extension F ↪−→ K, if f ∈ F [x] has distinct
roots, then f ∈ K[x] does as well. Also, note that if f
has distinct roots and g |f , then g also has distinct roots.

Definition 35.3. We say a polynomial f ∈ F [x] is
separable over F if every irreducible factor of f ∈ F [x]
has distinct roots.

Note that this definition, unlike the previous defini-
tion, is dependent on the ground field F . It is still the
case that if f ∈ F [x] is separable, then f ∈ K[x] is sepa-
rable, since f ’s irreducibles can only decompose more in
the extension field K/F . However, the converse is not
true in general.

Example. Let F = Fp(t), the field of rational functions
over Fp. Let f = xp− t ∈ F [x]. This is irreducible by the
Eisenstein criterion; does it have distinct roots?

We claim it does not. Let K/F be any extension,
α ∈ K a root of f ∈ K[x]. Then αp = t in K. So in K[x],

f(x) = xp − t
= xp − αp

since Fp = (x− α)p

So f is not separable.

Theorem 35.4. Let F be any field. If ∃f ∈ F [x] insep-
arable, then char(F ) = p > 0 and #F =∞.

Proof. Recall the derivative, defined for

f = anx
n + · · ·+ a0

as
f ′ = nanx

n−1 + · · ·+ a1

We claim first that

Claim 35.5. f ∈ F [x] has distinct roots iff f and f ′ have
no common roots in any extension K/F .

Proof. Suppose that f(α) = f ′(α) = 0 in K[x], for
α ∈ K. Then f(x) = (x − α)g(x) for some g ∈ K[x].
Then

f ′(x) = g(x) + (x− α)g′(x)

by the product rule. Then if f ′(α) = 0, we must have
g(α) = 0, so (x − α) | g. Then (x − α)2 | f , a contradic-
tion.

Claim 35.6. If f ∈ F [x] is irreducible and non-constant,
then f fails to have distinct roots iff f ′ = 0 ∈ F [x].

Proof. To say that f does not have distinct roots means
∃K/F , α ∈ K : (x−α)2 |f . Then (x−α) |f ′. Since f and
f ′ have a common factor in K[x], but f is irreducible in
F [x], then f |f ′ ∈ F [x]. So we must have f ′ = 0 ∈ F [x].

Definition 35.7. Let F be a field, char(F ) = p > 0. We
can define a field homomorphism given by

ϕ : F −→ F

α 7−→ αp

since (α+β)p = αp +βp. We say that F is perfect if ϕ is
an isomorphism (i.e., is surjective). We say that all fields
of characteristic zero are perfect.

In particular, note that if F is finite, then F is perfect.
Next, we claim that

Claim 35.8. If F is perfect, then every polynomial f ∈
F [x] is separable.

Proof. Suppose that ∃f ∈ F [x] inseparable. Then ∃f ∈
F [x] irreducible but without distinct roots. Suppose first
that char(f) = 0. Then all nonconstant polynomials have
nonzero derivatives. By the previous claim, f must have
distinct roots.

Now suppose char(f) = p > 0. Since F is perfect, we
can write

f(x) = g(xp)

for some g = anx
n + · · ·+ a0 ∈ F [x]. We can also choose

bi ∈ F such that bpi = ai. Then

f(x) = g(xp)

=
∑

aix
pi

=
∑

(bix
i)p

= (
∑

bix
i)p

so f is not irreducible, a contradiction.

This claim, along with the definition of perfect field,
yields our desired result. �

Definition 35.9. Let F ↪−→ K be a field extension.
α ∈ K is separable over F if its minimal irreducible
polynomial f ∈ F [x] is separable. We say that K/F is
separable if every element α ∈ K is separable.

Definition 35.10. A field extension K/F is normal if
∀f ∈ F [x] irreducible, f has a root in K iff f splits com-
pletely in K.

Theorem 35.11 (Fundamental Theorem of Galois The-
ory). K/F is Galois iff K/F is normal and separable.
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