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Lecture 2 — 9/2/11

Definition 2.1. A sample space S is the set of all possi-
ble outcomes of an experiment.

Definition 2.2. An event A ⊆ S is a subset of a sample
space.

Definition 2.3. Assuming that all outcomes are equally
likely and that the sample space is finite,

P (A) =
# favorable outcomes

# possible outcomes

is the probability that A occurs.

Proposition 2.4 (Multiplication Rule). If there are r ex-
periments and each experiment has ni possible outcomes,
then the overall sample space has size

n1n2 · · ·nr

Example. The probability of a full house in a five card
poker hand (without replacement, and without other
players) is

P (full house) =

13

(
4

3

)
· 12

(
4

2

)
(

52

5

)
Definition 2.5. The binomial coefficient is given by(

n

k

)
=

n!

(n− k)!k!

or 0 if k > n.

Theorem 2.6 (Sampling Table). The number of subsets
of size k chosen from a set of n distinct elements is given
by the following table:

ordered unordered

replacement nk
(
n+ k − 1

k

)
no replacement

n!

(n− k)!

(
n

k

)

Lecture 3 — 9/7/11

Proposition 3.1. The number of ways to choose k ele-
ments from a set of order n, with replacement and where
order doesn’t matter, is(

n+ k − 1

k

)

Proof. This count is equivalent to the number of ways
to put k indistinguishable particles in n distinguishable
boxes. Suppose we order the particles; then this count is
simply the number of ways to place “dividers” between
the particles, e.g.,

• • •| • | • •|| • |•

There are (
n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
ways to place the particles, which determines the place-
ment of the divisiors (or vice versa); this is our result. �

Example. 1.

(
n

k

)
=

(
n

n− k

)
2. n

(
n− 1

k − 1

)
= k

(
n

k

)
Pick k people out of n, then designate one as spe-
cial. The RHS represents how many ways we can
do this by first picking the k individuals and then
making our designation. On the LHS, we see the
number of ways to pick a special individual and
then pick the remaining k − 1 individuals from the
remaining pool of n− 1.

3. (Vandermonde)(
n+m

k

)
=

k∑
i=0

(
n

i

)(
m

k − i

)
On the LHS, we choose k people out of n + m.
On the RHS, we sum up, for every i, how to choose
i from the n people and k − i from the m people.

Definition 3.2. A probability space consists of a sample
space S along with a function P : P(S) → [0, 1] taking
events to real numbers, where

1. P (∅) = 0, P (S) = 1

2. P (
⋃∞
n=1An) =

∑∞
n=1 P (An) if the An are disjoint

Lecture 4 — 9/9/11

Example (Birthday Problem). The probability that at
least two people among a group of k share the same birth-
day, assuming that birthdays are evenly distributed across
the 365 standard days, is given by

P (match) = 1− P (no match)

= 1− 365 · 364 · · · (365− k + 1)

365k

Proposition 4.1.

1. P (AC) = 1− P (A).

2. If A ⊆ B, then P (A) ≤ P (B).

1



Stat 110—Intro to Probability Max Wang

3. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. All immediate. �

Corollary 4.2 (Inclusion-Exclusion). Generalizing 3
above,

P

 n⋃
i=1

Ai

 =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj)

+
∑
i<j<k

P (Ai ∩Aj ∩Ak)− · · ·

+ (−1)n+1P

 n⋂
i=1

Ai


Example (deMontmort’s Problem). Suppose we have n
cards labeled 1, . . . , n. We want to determine the proba-
bility that for some card in a shuffled deck of such cards,
the ith card has value i. Since the number of orderings of
the deck for which a given set of matches occurs is simply
the permutations on the remaining cards, we have

P (Ai) =
(n− 1)!

n!
=

1

n

P (A1 ∩A2) =
(n− 2)!

n!
=

1

n(n− 1)

P (A1 ∩ · · · ∩Ak) =
(n− k)!

n!

So using the above corollary,

P (A1 ∪ · · · ∪An) = n · 1

n
− n(n− 1)

2!
· 1

n(n− 1)

+
n(n− 1)(n− 2)

3!
· 1

n(n− 1)(n− 2)

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n

1

n!

≈ 1− 1

e

Lecture 5 — 9/12/11

Note. Translation from English to inclusion-exclusion:

• Probability that at least one of the Ai occurs:

P (A1 ∪ · · · ∪An)

• Probability that none of the Ai occurs:

1− P (A1 ∪ · · · ∪An)

• Probability that all of the Ai occur:

P (A1 ∩ · · · ∩An) = 1− P (AC1 ∪ · · · ∪ACn )

Definition 5.1. The probability of two events A and B
are independent if

P (A ∩B) = P (A)P (B)

In general, for n events A1, . . . , An, independence re-
quires i-wise independence for every i = 2, . . . , n; that
is, say, pairwise independence alone does not imply inde-
pendence.

Note. We will write P (A ∩B) as P (A,B).

Example (Newton-Pepys Problem). Suppose we have
some fair dice; we want to determine which of the fol-
lowing is most likely to occur:

1. At least one 6 given 6 dice.

2. At least two 6’s with 12 dice.

3. At least three 6’s with 18 dice.

For the first case, we have

P (A) = 1−
(
−1

5

)6

For the second,

P (B) = 1−
(
−1

5

)12

− 12

(
−1

1

)(
−1

5

)11

and for the third,

P (C) = 1−
2∑
k=0

(
18

k

)(
−1

1

)k (−1

5

)18−k

(The summand on the RHS is called a binomial
probability.)

Thus far, all the probabilities with which we have con-
cerned ourselves have been unconditional. We now turn
to conditional probability, which concerns how to update
our beliefs (and computed probabilities) based on new
evidence?

Definition 5.2. The probability of an event A given B
is

P (A|B) =
P (A ∩B)

P (B)

if P (B) > 0.

Corollary 5.3.

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

or, more generally,

P (A1 ∩ · · · ∩An) = P (A1) · P (A2|A1) · P (A3|A1, A2)

· · ·P (An|A1, . . . , An−1)

Theorem 5.4 (Bayes’ Theorem).

P (A|B) =
P (B|A)P (A)

P (B)

2
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Lecture 6 — 9/14/11

Theorem 6.1 (Law of Total Probability). Let S be a
sample space and A1, . . . , An a partition of S. Then

P (B) = P (B ∩A1) + · · ·+ P (B ∩An)

= P (B|A1)P (A1) + · · ·+ P (B|An)P (An)

Example. Suppose we are given a random two-card hand
from a standard deck.

1. What is the probability that both cards are aces
given that we have an ace?

P (both aces | have ace) =
P (both aces,have ace)

P (have ace)

=

(
4
2

)
/
(
52
2

)
1−

(
48
2

)
/
(
52
2

)
=

1

33

2. What is the probability that both cards are aces
given that we have the ace of spades?

P (both aces | ace of spades) =
3

51
=

1

17

Example. Suppose that a patient is being tested for a
disease and it is known that 1% of similar patients have
the disease. Suppose also that the patient tests positive
and that the test is 95% accurate. Let D be the event that
the patient has the disease and T the event that he tests
positive. Then we know P (T |D) = 0.95 = P (TC |DC).
Using Bayes’ theorem and the Law of Total Probability,
we can compute

P (D|T ) =
P (T |D)P (D)

P (T )

=
P (T |D)P (D)

P (T |D)P (D) + P (T |DC)P (DC)

≈ 0.16

Definition 6.2. Two events A and B are conditionally
independent of an event C if

P ((A ∩B) | C) = P (A|C)P (B|C)

Example. Two conditionally independent events are
not necessarily unconditionally independent. For in-
stance, suppose we have a chess opponent of unknown
strength. We might say that conditional on the oppo-
nent’s strength, all games outcomes would be indepen-
dent. However, without knowing the opponent’s strength,
earlier games would give us useful information about the
opponent’s strength; hence, without the conditioning, the
game outcomes are not independent.

Example. Two independent events are not necessarily
conditionally independent. Suppose we know that a fire
alarm goes off (event A). Suppose there are only two
possible causes, that a fire happened, F , or that someone
was making popcorn, C, and suppose moreover that these
events are independent. Given, however, that the alarm
went off, we have

P (F |(A ∩ CC)) = 1

and hence we do not have conditional independence.

Lecture 7 — 9/16/11

Example (Monty Hall Problem). Suppose there are
three doors, behind two of which are goats and behind
one of which is a car. Monty Hall, the game show host,
knows the contents of each door, but we, the player, do
not, and have one chance to choose the car. After choos-
ing a door, Monty then opens one of the two remaining
doors to reveal a goat (if both remaining doors have goats,
he chooses with equal probability). We are then given the
option to change our choice—should we do so?

In fact, we should; the chance that switching will give
us the car is the same as the chance that we did not origi-
nally pick the car, which is 2

3 . However, we can also solve
the problem by conditioning. Suppose we have chosen a
door (WLOG, say the first). Let S be the event of finding
the car by switching, and let Di be the event that the car
is in door i. Then by the Law of Total Probability,

P (S) = P (S|D1)
1

3
+ P (S|D2)

1

3
+ P (S|D3)

1

3

= 0 + 1 · 1

3
+ 1 · 1

3

=
2

3

By symmetry, the probability that we succeed condi-
tioned on the door Monty opens is the same.

Example (Simpson’s Paradox). Suppose we have the
two following tables:

Hibbert
heart band-aid

success 70 10
failure 20 0

Nick
heart band-aid

success 2 81
failure 8 9

3
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for the success of two doctors for two different operations.
Note that although Hibbert has a higher success rate

conditional on each operation, Nick’s success rate is
higher overall. Let us denote A to be the event of a suc-
cessful operation, B the event of being treated by Nick,
and C the event of having heart surgery. In other words,
then, we have

P (A|B,C) < P (A|BC , C)

and
P (A|B,CC) < P (A|BC , CC)

but
P (A|B) > P (A|BC)

In this example, C is the confounder.

Lecture 8 — 9/19/11

Definition 8.1. A one-dimensional random walk mod-
els a (possibly infinite) sequence of successive steps along
the number line, where, starting from some position i,
we have a probability p of moving +1 and a probability
q = 1− p of moving −1.

Example. An example of a one-dimensional random
walk is the gambler’s ruin problem, which asks: Given
two individuals A and B playing a sequence of successive
rounds of a game in which they bet $1, with A winning
B’s dollar with probability p and A losing a dollar to B
with probability q = 1 − p, what is the probability that
A wins the game (supposing A has i dollars and B has
n−i dollars)? This problem can be modeled by a random
walk with absorbing states at 0 and n, starting at i.

To solve this problem, we perform first-step analy-
sis; that is, we condition on the first step. Let pi =
P (A wins game | A start at i). Then by the Law of Total
Probability, for 1 ≤ i ≤ n− 1.

pi = ppi+1 + qpi−1

and of course we have p0 = 0 and pn = 1. This equation
is a difference equation.

To solve this equation, we start by guessing

pi = xi

Then we have

xi = pxi+1 + qxi−1

px2 − xi + q = 0

x =
1±
√

1− 4pq

2p

=
1±

√
1− 4p(1− p)

2p

=
1±

√
4p2 − 4p+ 1

2p

=
1∓ (2p− 1)

2p

= 1,
q

p

As with differential equations, this gives a general solu-
tion of the form

pi = A1i +B

(
−1

q

)i
for p 6= q (to avoid a repeated root). Our boundary con-
ditions for p0 and pn give

B = −A

and

1 = A

(
1− q

p

)n
To solve for the case where p = q, we can guess x = q

p
and take

lim
x→1

1− xi

1− xn
= lim
x→1

ixi−1

nxn−1
=

i

n
So we have

pi =


1−

(
−1
q

)i
1−

(
−1
q

)n p 6= q

i

n
p = q

Now suppose that p = 0.49 and i = n − i. Then we
have the following surprising table

N P (A wins)
20 0.40
100 0.12
200 0.02

Note that this table is true when the odds are only slightly
against A and when A and B start off with equal funding;
it is easy to see that in a typical gambler’s situation, the
chance of winning is extremely small.

Definition 8.2. A random variable is a function

X : S → R

from some sample space S to the real line. A random
variable acts as a “summary” of some aspect of an exper-
iment.

Definition 8.3. A random variable X is said to have the
Bernoulli distribution if X has only two possible values,
0 and 1, and there is some p such that

P (X = 1) = p P (X = 0) = 1− p

We say that
X ∼ Bern(p)

4
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Note. We write X = 1 to denote the event

{s ∈ S : X(s) = 1} = X−1{1}

Definition 8.4. The distribution of successes in n inde-
pendent Bern(p) trials is called the binomial distribution
and is given by

P (X = k) =

(
n

k

)
pk(1− p)n−k

where 0 ≤ k ≤ n. We write

X ∼ Bin(n, p)

Definition 8.5. The probability mass function (PMF)
of a discrete random variable (a random variable with
enumerable values) is a function that gives the probabil-
ity that the random variable takes some value. That is,
given a discrete random variable X, its PMF is

fX(x) = P (X = x)

Lecture 9 — 9/21/11

In addition to our definition of the binomial distribu-
tion by its PMF, we can also express a random variable
X ∼ Bin(n, p) as a sum of indicator random variables,

X = X1 + · · ·+Xn

where

Xi =

{
1 ith trial succeeds

0 otherwise

In other words, the Xi are i.i.d. (independent, identically
distributed) Bern(p).

Definition 9.1. The cumulative distribution function
(CDF) of a random variable X is

FX(x) = P (X ≤ x)

Note. The requirements for a PMF with values pi is that
each pi ≥ 0 and

∑
i pi = 1. For Bin(n, p), we can easily

verify this with the binomial theorem, which yields

n∑
k=0

(
n

k

)
pkqn−k = (p+ q)n = 1

Proposition 9.2. If X,Y are independent random vari-
ables and X ∼ Bin(n, p), Y ∼ Bin(m, p), then

X + Y ∼ Bin(n+m, p)

Proof. This is clear from our “story” definition of the
binomial distribution, as well as from our indicator r.v.’s.
Let us also check this using PMFs.

P (X + Y = k) =

k∑
j=0

P (X + Y = k | X = j)P (X = j)

=

k∑
j=0

P (Y = k − j | X − j)
(
n

j

)
pjqn−j

independence =

k∑
j=0

P (Y = k − j)
(
n

j

)
pjqn−j

=

k∑
j=0

(
m

k − j

)
pk−jqm−(k−j)

(
n

j

)
pjqn−j

= pkqn+m−k
k∑
j=0

(
m

k − j

)(
n

j

)

Vandermonde =

(
n+m

k

)
pkqn+m−k

�

Example. Suppose we draw a random 5-card hand from
a standard 52-card deck. We want to find the distribu-
tion of the number of aces in the hand. Let X = #aces.
We want to determine the PMF of X (or the CDF—but
the PMF is easier). We know that P (X = k) = 0 ex-
cept if k = 0, 1, 2, 3, 4. This is clearly not binomial since
the trials (of drawing cards) are not independent. For
k = 0, 1, 2, 3, 4, we have

P (X = k) =

(
4
k

)(
48
5−k
)(

52
5

)
which is just the probability of choosing k out of the 4
aces and 5−k of the non-aces. This is reminiscient of the
elk problem in the homework.

Definition 9.3. Suppose we have w white and b black
marbles, out of which we choose a simple random sam-
ple of n. The distribution of # of white marbles in the
sample, which we will call X, is given by

P (X = k) =

(
w
k

)(
b

n−k
)(

w+b
n

)
where 0 ≤ k ≤ w and 0 ≤ n − k ≤ b. This is called the
hypergeometric distribution, denoted HGeom(w, b, n).

Proof. We should show that the above is a valid PMF. It
is clearly nonnegative. We also have, by Vandermonde’s
identity,

w∑
k=0

(
w
k

)(
b

n−k
)(

w+b
n

) =

(
w+b
n

)(
w+b
n

) = 1

�

5
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Note. The difference between the hypergometric and bi-
nomial distributions is whether or not we sample with
replacement. We would expect that in the limiting case
of n→∞, they would behave similarly.

Lecture 10 — 9/23/11

Proposition 10.1 (Properties of CDFs). A function
FX is a valid CDF iff the following hold about FX :

1. monotonically nondecreasing

2. right-continuous

3. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

Definition 10.2. Two random variables X and Y are
independent if ∀x, y,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y)

In the discrete case, we can say equivalently that

P (X = x, Y = y) = P (X = x)P (Y = y)

Note. As an aside before we move on to discuss averages
and expected values, recall that

1

n

n∑
i=1

i =
n+ 1

2

Example. Suppose we want to find the average of
1, 1, 1, 1, 1, 3, 3, 5. We could just add these up and divide
by 8, or we could formulate the average as a weighted
average,

5

8
· 1 +

2

8
· 3 +

1

8
· 5

Definition 10.3. The expected value or average of a dis-
crete random variable X is

E(X) =
∑

x∈Im(X)

xP (X = x)

Observation 10.4. Let X ∼ Bern(p). Then

E(X) = 1 · P (X = 1) + 0 · P (X = 0) = p

Definition 10.5. If A is some event, then an indicator
random variable for A is

X =

{
1 A occurs

0 otherwise

By definition, X ∼ Bern(P (A)), and by the above,

E(X) = P (A)

The above shows that to get the probability of an
event, we can simply compute the expected value of an
indicator.

Observation 10.6. Let X ∼ Bin(n, p). Then (using the
binomial theorem),

E(X) =

n∑
k=0

k

(
n

k

)
pkqn−k

=

n∑
k=1

k

(
n

k

)
pkqn−k

=

n∑
k=1

n

(
n− 1

k − 1

)
pkqn−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1qn−k

= np

n−1∑
j=0

(
n− 1

j

)
pjqn−1−j

= np

Proposition 10.7. Expected value is linear; that is, for
random variables X and Y and some constant c,

E(X + Y ) = E(X) + E(Y )

and
E(cX) = cE(X)

Observation 10.8. Using linearity, given X ∼ Bin(n, p),
since we know

X = X1 + · · ·+Xn

where the Xi are i.i.d. Bern(p), we have

X = p+ · · ·+ p = np

Example. Suppose that, once again, we are choosing a
five card hand out of a standard deck, with X = #aces.
If Xi is an indicator of the ith card being an ace, we have

E(X) = E(X1 + · · ·+X5)

= E(X1) + · · ·+ E(X5)

by symmetry = 5E(X1)

= 5P (first card is ace)

=
5

13

Note that this holds even though the Xi are dependent.

Definition 10.9. The geometric distribution, Geom(p),
is the number of failures of independent Bern(p) tri-
als before the first success. Its PMF is given by (for
X ∼ Geom(p))

P (X = k) = qkp

6
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for k ∈ N. Note that this PMF is valid since

∞∑
k=0

pqk = p · 1

1− q
= 1

Observation 10.10. Let X ∼ Geom(p). We have our
formula for infinite geometric series,

∞∑
k=0

qk =
1

1− q

Taking the derivative of both sides gives

∞∑
k=1

kqk−1 =
1

(1− q)2

Then

E(X) =

∞∑
k=0

kpqk = p

∞∑
k=0

kqk =
pq

(1− q)2
=
q

p

Alternatively, we can use first step analysis and write a
recursive formula for E(X). If we condition on what hap-
pens in the first Bernoulli trial, we have

E(X) = 0 · p+ (1 + E(X))q

E(X)− qE(X) = q

E(X) =
q

1− q
E(X) =

q

p

Lecture 11 — 9/26/11

Recall our assertion that E, the expected value function,
is linear. We now prove this statement.

Proof. Let X and Y be discrete random variables. We
want to show that E(X + Y ) = E(X) + E(Y ).

E(X + Y ) =
∑
t

tP (X + Y = t)

=
∑
s

(X + Y )(s)P ({s})

=
∑
s

(X(s) + Y (s))P ({s})

=
∑
s

X(s)P ({s}) +
∑
s

Y (s)P ({s})

=
∑
x

xP (X = x) +
∑
y

yP (Y = y)

= E(X) + E(Y )

The proof that E(cX) = cE(X) is similar. �

Definition 11.1. The negative binomial distribution,
NB(r, p), is given by the number of failures of indepen-
dent Bern(p) trials before the rth success. The PMF for
X ∼ NB(r, p) is given by

P (X = n) =

(
n+ r − 1

r − 1

)
pr(1− p)n

for n ∈ N.

Observation 11.2. Let X ∼ NB(r, p). We can write
X = X1 + · · · + Xr where each Xi is the number of
failures between the (i − 1)th and ith success. Then
Xi ∼ Geom(p). Thus,

E(X) = E(X1) + · · ·+ E(Xr) =
rq

p

Observation 11.3. Let X ∼ FS(p), where FS(p) is the
time until the first success of independent Bern(p) trials,
counting the success. Then if we take Y = X−1, we have
Y ∼ Geom(p). So,

E(X) = E(Y ) + 1 =
q

p
+ 1 =

1

p

Example. Suppose we have a random permutation of
{1, . . . , n} with n ≥ 2. What is the expected number
of local maxima—that is, numbers greater than both its
neighbors?

Let Ij be the indicator random variable for position j
being a local maximum (1 ≤ j ≤ n). We are interested in

E(I1 + · · ·+ In) = E(I1) + · · ·+ E(In)

For the non-endpoint positions, in each local neighbor-
hood of three numbers, the probability that the largest
number is in the center position is 1

3 .

5, 2, · · · , 28, 3, 8︸ ︷︷ ︸, · · · , 14

Moreover, these positions are all symmetrical. Analo-
gously, the probability that an endpoint position is a local
maximum is 1

2 . Then we have

E(I1) + · · ·+ E(In) =
n− 2

3
+

2

2
=
n+ 1

3

Example (St. Petersburg Paradox). Suppose you are
given the offer to play a game where a coin is flipped until
a heads is landed. Then, for the number of flips i made up
to and including the heads, you receive $2i. How much
should you be willing to pay to play this game? That
is, what price would make the game fair, or the expected
value zero?

Let X be the number of flips of the fair coin up to and
including the first heads. Clearly, X ∼ FS( 1

2 ). If we let
Y = 2X , we want to find E(Y ). We have

E(Y ) =

∞∑
k=1

2k · 1

2k
=

∞∑
k=1

1

7
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This assumes, however, that our cash source is boundless.
If we bound it at 2K for some specific K, we should only
bet K dollars for a fair game—this is a sizeable difference.

Lecture 12 — 9/28/11

Definition 12.1. The Poisson distribution, Pois(λ), is
given by the PMF

P (X = k) =
e−λλk

k!

for k ∈ N, X ∼ Pois(λ). We call λ the rate parameter.

Observation 12.2. Checking that this PMF is indeed
valid, we have

∞∑
k=0

e−λ
λk

k!
= e−λeλ = 1

Its mean is given by

E(X) = e−λ
∞∑
k=0

k
λk

k!

= e−λ
∞∑
k=1

λk

(k − 1)!

= λe−λ
∞∑
k=1

λk−1

(k − 1)!

= λe−λeλ

= λ

The Poisson distribution is often used for applications
where we count the successes of a large number of trials
where the per-trial success rate is small. For example, the
Poisson distribution is a good starting point for counting
the number of people who email you over the course of
an hour. The number of chocolate chips in a chocolate
chip cookie is another good candidate for a Poisson dis-
tribution, or the number of earthquakes in a year in some
particular region.

Since the Poisson distribution is not bounded, these
examples will not be precisely Poisson. However, in gen-
eral, with a large number of events Ai with small P (Ai),
and where the Ai are all independent or “weakly depen-
dent,” then the number of the Ai that occur is approx-
imately Pois(λ), with λ ≈

∑n
i=1 P (Ai). We call this a

Poisson approximation.

Proposition 12.3. Let X ∼ Bin(n, p). Then as n→∞,
p → 0, and where λ = np is held constant, we have
X ∼ Pois(λ).

Proof. Fix k. Then as n→∞ and p→ 0,

lim
n→∞
p→0

P (X = k) = lim
n→∞
p→0

(
n

k

)
pk(1− p)n−k

= lim
n→∞
p→0

n(n− 1) · · · (n− k + 1)

k!

(
−1

λ

)k
·

(
1− λ

n

)n(
1− λ

n

)−k
=
λk

k!
· e−λ

�

Example. Suppose we have n people and we want to
know the approximate probability that at least three in-
dividuals have the same birthday. There are

(
n
3

)
triplets

of people; for each triplet, let Iijk be the indicator r.v.
that persons i, j, and k have the same birthday. Let
X = # triple matches. Then we know that

E(X) =

(
n

3

)
1

3652

To approximate P (X ≥ 1), we approximate X ∼ Pois(λ)
with λ = E(X). Then we have

P (X ≥ 1) = 1− P (X = 0) = 1− e−λλ
0

0!
= 1− e−λ

Lecture 13 — 9/30/11

Definition 13.1. Let X be a random variable. Then X
has a probability density function (PDF) fX(x) if

P (a ≤ X ≤ b) =

∫ b

a

fX(x) dx

A valid PDF must satisfy

1. ∀x, fX(x) ≥ 0

2.

∫ ∞
−∞

fX(x) dx = 1

Note. For ε > 0 very small, we have

fX(x0) · ε ≈ P
(
X ∈ (x0 −

ε

2
, x0 +

ε

2
)

)
Theorem 13.2. If X has PDF fX , then its CDF is

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt

If X is continuous and has CDF FX , then its PDF is

fX(x) = F ′X(x)

Moreover,

P (a < X < b) =

∫ b

a

fX(x) dx = FX(b)− FX(a)

8
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Proof. By the Fundamental Theorem of Calculus. �

Definition 13.3. The expected value of a continuous
random variable X is given by

E(X) =

∫ ∞
−∞

xfX(x) dx

Giving the expected value is like giving a one number
summary of the average, but it provides no information
about the spread of a distribution.

Definition 13.4. The variance of a random variable X
is given by

Var(X) = E((X − EX)2)

which is the expected value of the distance from X to its
mean; that is, it is, on average, how far X is from its
mean.

We can’t use E(X − EX) because, by linearity, we
have

E(X − EX) = EX − E(EX) = EX − EX = 0

We would like to use E|X − EX|, but absolute value is
hard to work with; instead, we have

Definition 13.5. The standard deviation of a random
variable X is

SD(X) =
√

Var(X)

Note. Another way we can write variance is

Var(X) = E((X − EX)2)

= E(X2 − 2X(EX) + (EX)2)

= E(X2)− 2E(X)E(X) + (EX)2

= E(X2)− (EX)2

Definition 13.6. The uniform distribution, Unif(a, b), is
given by a completely random point chosen in the interval
[a, b]. Note that the probability of picking a given point
x0 is exactly 0; the uniform distribution is continuous.
The PDF for U ∼ Unif(a, b) is given by

fU (x) =

{
c a ≤ x ≤ b
0 otherwise

for some constant c. To find c, we note that, by the defi-
nition of PDF, we have∫ b

a

cdx = 1

c(b− a) = 1

c =
1

b− a

The CDF, then, is given by

FU (x) =

∫ x

−∞
fU (t) dt =

∫ x

a

fU (t) dt

=

∫ x

a

1

b− a
dt

=
x− a
b− a

Observation 13.7. The expected value of an r.v. U ∼
Unif(a, b) is

E(U) =

∫ b

a

x

b− a
dx

=
x2

2(b− a)

∣∣∣∣∣
b

a

=
b2 − a2

2(b− a)

=
(b+ a)(b− a)

2(b− a)

=
b+ a

2

This is the midpoint of the interval [a, b].

Finding the variance of U ∼ Unif(a, b), however, is a
bit more trouble. We need to determine E(U2), but it is
too much of a hassle to figure out the PDF of U2. Ideally,
things would be as simple as

E(U2) =

∫ ∞
−∞

x2fU (x) dx

Fortunately, this is true:

Theorem 13.8 (Law of the Unconscious Statistician
(LOTUS)). Let X be a continuous random variable, g :
R→ R continuous. Then

E(g(X)) =

∫ ∞
−∞

g(x)fX(x) dx

where fX is the PDF of X. This allows us to determine
the expected value of g(X) without knowing its distribu-
tion.

Observation 13.9. The variance of U ∼ Unif(a, b) is
given by

Var(U) = E(U2)− (EU)2

=

∫ b

a

x2fU (x) dx−
(
b+ a

2

)2

=
1

b− a

∫ b

a

x2 dx−
(
b+ a

2

)2

9
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=
1

b− a
· x

3

3

∣∣∣∣∣
b

a

−
(
b+ a

2

)2

=
b3

3(b− a)
− a3

3(b− a)
− (b+ a)2

4

=
(b− a)2

12

The following table is useful for comparing discrete
and continuous random variables:

discrete continuous
P?F PMF P (X = x) PDF fX(x)

CDF FX(x) = P (X ≤ x) FX(x) = P (X ≤ x)

E(X)
∑
x xP (X = x)

∫∞
−∞ xfX(x) dx

Var(X) EX2 − (EX)2 EX2 − (EX)2

E(g(X))
[LOTUS]

∑
x g(x)P (X = x)

∫∞
−∞ g(x)fX(x) dx

Lecture 14 — 10/3/11

Theorem 14.1 (Universality of the Uniform). Let us
take U ∼ Unif(0, 1), F a strictly increasing CDF. Then
for X = F−1(U), we have X ∼ F . Moreover, for any
random variable X, if X ∼ F , then F (X) ∼ Unif(0, 1).

Proof. We have

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

since P (U ≤ F (x)) is the length of the interval [0, F (x)],
which is F (x). For the second part,

P (F (X) ≤ x) = P (X ≤ F−1(x)) = F (F−1(x)) = x

since F is X’s CDF. But this shows that F (X) ∼
Unif(0, 1). �

Example. Let F (x) = 1 − e−x with x > 0 be the CDF
of an r.v. X. Then F (X) = 1− e−X by an application of
the second part of Universality of the Uniform.

Example. Let F (x) = 1 − e−x with x > 0, and also let
U ∼ Unif(0, 1). Suppose we want to simulate F with a
random variable X; that is, X ∼ F . Then computing the
inverse

F−1(u) = − ln(1− u)

yields F−1(U) = − ln(1− U) ∼ F .

Proposition 14.2. The standard uniform distribution is
symmetric; that is, if U ∼ Unif(0, 1), then also 1 − U ∼
Unif(0, 1).

Intuitively, this is true because there is no difference
between measuring U from the right vs. from the left of
[0, 1].

The general uniform distribution is also linear; that is,
a+ bU is uniform on some interval [a, b]. If a distribution
is nonlinear, it is hence nonuniform.

Definition 14.3. We say that random variables
X1, . . . , Xn are independent if

• for continuous, P (X1 ≤ x1, . . . , Xn ≤ xn) =
P (X1 ≤ x1) · · ·P (Xn ≤ xn)

• for discrete, P (X1 = x1, . . . , Xn = xn) = P (X1 =
x1) · · ·P (Xn = xn)

The expressions on the LHS are called joint CDFs and
joint PMFs respectively.

Note that pairwise independence does not imply inde-
pendence.

Example. Consider the penny matching game, where
X1, X2 ∼ Bern( 1

2 ), i.i.d., and let X3 be the indicator r.v.
for the eventX1 = X2 (the r.v. for winning the game). All
of these are pairwise independent, but the X3 is clearly
dependent on the combined outcomes of X1 and X2.

Definition 14.4. The normal distribution, given by
N (0, 1), is defined by PDF

f(z) = ce−z
2/2

where c is the normalizing constant required to have f
integrate to 1.

Proof. We want to prove that our PDF is valid; to do
so, we will simply determine the value of the normalizing
constant that makes it so. We will integrate the square
of the PDF sans constant because it is easier than inte-
grating näıvely∫ ∞

−∞
e−z

2/2 dz

∫ ∞
−∞

e−z
2/2 dz

=

∫ ∞
−∞

e−x
2/2 dx

∫ ∞
−∞

e−y
2/2 dy

=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)/2 dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2/2r dr dθ

Substituting u =
r2

2
,du = r dr

=

∫ 2π

0

(∫ ∞
0

e−u du

)
dθ

= 2π

So our normalizing constant is c = 1√
2π

. �

10
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Observation 14.5. Let us compute the mean and vari-
ance of Z ∼ N (0, 1). We have

EZ =
1√
2π

∫ ∞
−∞

ze−z
2/2 dz = 0

by symmetry (the integrand is odd). The variance re-
duces to

Var(Z) = E(Z2)− (EZ)2 = E(Z2)

By LOTUS,

E(Z2) =
1√
2π

∫ ∞
−∞

z2e−z
2/2 dz

evenness =
2√
2π

∫ ∞
0

z2e−z
2/2 dz

by parts =
2√
2π

∫ ∞
0

z︸︷︷︸
u

ze−z
2/2 dz︸ ︷︷ ︸
dv

=
2√
2π

uv∣∣∣∣∣
∞

0

+

∫ ∞
0

e−z
2/2 dz


=

2√
2π

(
0 +

√
2π

2

)
= 1

We use Φ to denote the standard normal CDF; so

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt

By symmetry, we also have

Φ(−z) = 1− Φ(z)

Lecture 15 — 10/5/11

Recall the standard normal distribution. Let Z be an
r.v., Z ∼ N (0, 1). Then Z has CDF Φ; it has E(Z) = 0,
Var(Z) = E(Z2) = 1, and E(Z3) = 0.1 By symmetry,
also −Z ∼ N (0, 1).

Definition 15.1. Let X = µ + σZ, with µ ∈ R (the
mean or center), σ > 0 (the SD or scale). Then we say
X ∼ N (µ, σ2). This is the general normal distribution.

If X ∼ N (µ, σ2), we have E(X) = µ and Var(µ +
σZ) = σ2 Var(Z) = σ2. We call Z = X−µ

σ the standard-
ization of X. X has CDF

P (X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= Φ

(
x− µ
σ

)

which yields a PDF of

fX(x) =
1

σ
√

2π
e−( x−µσ )

2
/2

We also have −X = −µ+ σ(−Z) ∼ N (−µ, σ2).
Later, we will show that if Xi ∼ N (µi, σ

2
i ) are inde-

pendent, then

Xi +Xj ∼ N (µi + µj , σ
2
i + σ2

j )

and
Xi −Xj ∼ N (µi − µj , σ2

i + σ2
j )

Observation 15.2. If X ∼ N (µ, σ2), we have

P (|X − µ| ≤ σ) ≈ 68%

P (|X − µ| ≤ 2σ) ≈ 95%

P (|X − µ| ≤ 3σ) ≈ 99.7%

Observation 15.3. We observe some properties of the
variance.

Var(X) = E((X − EX)2) = EX2 − (EX)2

For any constant c,

Var(X + c) = Var(X)

Var(cX) = c2 Var(X)

Since variance is not linear, in general, Var(X + Y ) 6=
Var(X) + Var(Y ). However, if X and Y are independent,
we do have equality. On the other extreme,

Var(X +X) = Var(2X) = 4 Var(X)

Also, in general,

Var(X) ≥ 0

Var(X) = 0 ⇐⇒ ∃a : P (X = a) = 1

Observation 15.4. Let us compute the variance of the
Poisson distribution. Let X ∼ Pois(λ). We have

E(X2) =

∞∑
k=0

k2
e−λλk

k!

To reduce this sum, we can do the following:

∞∑
k=0

λk

k!
= eλ

Taking the derivative w.r.t. λ,
∞∑
k=1

kλk−1

k!
= eλ

λ

∞∑
k=0

kλk−1

k!
= λeλ

1These are called the first, second, and third moments.

11
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∞∑
k=1

kλk

k!
= λeλ

Repeating,
∞∑
k=1

k2λk−1

k!
= λeλ + eλ

∞∑
k=1

k2λk

k!
= λeλ(λ+ 1)

So,

E(X2) =

∞∑
k=0

k2
e−λλk

k!

= e−λeλλ(λ+ 1)

= λ2 + λ

So for our variance, we have

Var(X) = (λ2 + λ)− λ2 = λ

Observation 15.5. Let us compute the variance of the-
binomial distribution. Let X ∼ Bin(n, p). We can write

X = I1 + · · ·+ In

where the Ij are i.i.d. Bern(p). Then,

X2 = I21 + · · ·+ I2n + 2I1I2 + 2I1I3 + · · ·+ 2In−1In

where IiIj is the indicator of success on both i and j.

E(X2) = nE(I21 ) + 2

(
n

2

)
E(I1I2)

= np+ n(n− 1)p2

= np+ n2p2 − np2

So,

Var(X) = (np+ n2p2 − np2)− n2p2

= np(1− p)
= npq

Proof. (of Discrete LOTUS)
We want to show that E(g(X) =

∑
x g(x)P (X = x). To

do so, once again we can “ungroup” our expected value
expression:∑

x

g(x)P (X = x) =
∑
s∈S

g(X(s))P ({s})

We can rewrite this as∑
x

∑
s:X(s)=x

g(X(s))P ({s}) =
∑
x

g(x)
∑

s:X(s)=x

P ({s})

=
∑
x

g(x)P (X = x)

�

Lecture 17 — 10/14/11

Definition 17.1. The exponential distribution, Expo(λ),
is defined by PDF

f(x) = λe−λx

for x > 0 and 0 elsewhere. We call λ the rate parameter.

Integrating clearly yields 1, which demonstrates valid-
ity. Our CDF is given by

F (x) =

∫ x

0

λe−λt dt

=

{
1− e−λx x > 0

0 otherwise

Observation 17.2. We can normalize any X ∼ Expo(λ)
by multiplying by λ, which gives Y = λX ∼ Expo(1). We
have

P (Y ≤ y) = P (X ≤ y

λ
) = 1− e−λy/λ = 1− e−y

Let us now compute the mean and variance of Y ∼
Expo(1). We have

E(Y ) =

∫ ∞
0

ye−y dy

= (−ye−y)

∣∣∣∣∣
∞

0

+

∫ ∞
0

e−y dy

= 1

for the mean. For the variance,

Var(Y ) = EY 2 − (EY )2

=

∫ ∞
0

y2e−y dy − 1

= 1

Then for X = Y
λ , we have E(X) = 1

λ and Var(X) = 1
λ2 .

Definition 17.3. A random variableX has a memoryless
distribution if

P (X ≥ s+ t | X ≥ s) = P (X ≥ t)

Intuitively, if we have a random variable that we in-
terpret as a waiting time, memorylessness means that no
matter how long we have already waited, the probability
of having to wait a given time more is invariant.

12
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Proposition 17.4. The exponential distribution is mem-
oryless.

Proof. Let X ∼ Expo(λ). We know that

P (X ≥ t) = 1− P (X ≤ t) = e−λt

Meanwhile,

P (X ≥ s+ t | X ≥ s) =
P (X ≥ s+ t,X ≥ s)

P (X ≥ s)

=
P (X ≥ s+ t)

P (X ≥ s)

=
e−λ(s+t)

e−λs

= e−λt

= P (X ≥ t)

which is our desired result. �

Example. Let X ∼ Expo(λ). Then by linearity and by
the memorylessness,

E(X | X > a) = a+ E(X − a | X > a)

= a+
1

λ

Lecture 18 — 10/17/11

Theorem 18.1. If X is a positive, continuous random
variable that is memoryless (i.e., its distribution is mem-
oryless), then there exists λ ∈ R such that X ∼ Expo(λ).

Proof. Let F be the CDF of X and G = 1 − F . By
memorylessness,

G(s+ t) = G(s)G(t)

We can easily derive from this identity that ∀k ∈ Q,

G(kt) = G(t)k

This can be extended to all k ∈ R. If we take t = 1, then
we have

G(x) = G(1)x = ex lnG(1)

But since G(1) < 1, we can define λ = − lnG(1), and we
will have λ > 0. Then this gives us

F (x) = 1−G(x) = 1− e−λx

as desired. �

Definition 18.2. A random variable X has
moment-generating function (MGF)

M(t) = E(etX)

if M(t) is bounded on some interval (−ε, ε) about zero.

Observation 18.3. We might ask why we call M
“moment-generating.” Consider the Taylor expansion of
M :

E(etX) = E

 ∞∑
n=0

Xntn

n!

 =

∞∑
n=0

E(Xn)tn

n!

Note that we cannot simply make use of linearity since
our sum is infinite; however, this equation does hold for
reasons beyond the scope of the course.

This observation also shows us that

E(Xn) = M (n)(0)

Claim 18.4. If X and Y have the same MGF, then they
have the same CDF.

We will not prove this claim.

Observation 18.5. If X has MGF MX and Y has MGF
MY , then

MX+Y = E(et(X+Y )) = E(etX)E(etY ) = MXMY

The second inequality comes from the claim (which we
will prove later) that if for X,Y independent, E(XY ) =
E(X)E(Y ).

Example. Let X ∼ Bern(p). Then

M(t) = E(etX) = pet + q

Suppose now that X ∼ Bin(n, p). Again, we write
X = I1 + · · ·+ In where the Ij are i.i.d Bern(p). Then we
see that

M(t) = (pet + q)n

Example. Let Z ∼ N (0, 1). We have

M(t) =
1√
2π

∫ ∞
−∞

etz−z
2/2 dz

completing the square =
et

2/2

√
2π

∫ ∞
−∞

e−(1/2)(z−t)
2

dz

= et
2/2

Example. Suppose X1, X2, . . . are conditionally inde-
pendent (given p) random variables that are Bern(p).
Suppose also that p is unknown. In the Bayesian ap-
proach, let us treat p as a random variable. Let p ∼
Unif(0, 1); we call this the prior distribution.

Let Sn = X1 + · · ·+Xn. Then Sn | p ∼ Bin(n, p). We
want to find the posterior distribution, p | Sn, which will
give us P (Xn+1 = 1 | Sn = k). Using “Bayes’ Theorem,”

f(p | Sn = k) =
P (Sn = k | p)f(p)

P (Sn = k)

13
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=
P (Sn = k | p)
P (Sn = k)

∝ pk(1− p)n−k

In the specific case of Sn = n, normalizing is easier:

f(p | Sn = n) = (n+ 1)pn

Computing P (Xn+1 = 1 | Sn = k) simply requires find-
ing the expected value of an indicator with the above
probability p | Sn = n.

P (Xn+1 = 1 | Sn = n) =

∫ 1

0

p(n+ 1)pn dp =
n+ 1

n+ 2

Lecture 19 — 10/19/11

Observation 19.1. Let X ∼ Expo(1). We want to de-
termine the MGF M of X. By LOTUS,

M(t) = E(etX)

=

∫ ∞
0

etxe−x dx

=

∫ ∞
0

e−x(1−t) dx

=
1

1− t
, t < 1

If we write
1

1− t
=

∞∑
n=0

tn =

∞∑
n=0

n!
tn

n!

we get immediately that

E(Xn) = n!

Now take Y ∼ Expo(1) and let X = λY ∼ Expo(1). So
Y n = Xn

λn , and hence

E(Y n) =
n!

λn

Observation 19.2. Let Z ∼ N (0, 1), and let us deter-
mine all its moments. We know that for n odd, by sym-
metry,

E(Zn) = 0

We previously showed that

M(t) = et
2/2

But we can write

∞∑
n=0

(t2/2)n

n!
=

∞∑
n=0

t2n

2nn!
=

∞∑
n=0

(2n)!

2nn!

t2n

(2n)!

So

E(Z2n) =
(2n)!

2nn!

Observation 19.3. Let X ∼ Pois(λ). By LOTUS, its
MGF is given by

E(etX) =

∞∑
k=0

etke−λ
λk

k!

= e−λeλe
t

= eλ(e
t−1)

Observation 19.4. Now let X ∼ Pois(λ) and Y ∼
Pois(µ) independent. We want to find the distribution
of X + Y . We can simply multiply their MGFs, yielding

MX(t)MY (t) = eλ(e
t−1)eµ(e

t−1)

= e(λ+µ)(e
t−1)

Thus, X + Y ∼ Pois(λ+ µ).

Example. Suppose X,Y above are dependent; specifi-
cally, take X = Y . Then X + Y = 2X. But this cannot
be Poisson since it only takes on even values. We could
also compute the mean and variance

E(2X) = 2λ Var(2X) = 4λ

but they should be equal for the Poisson.

We now turn to the study of joint distributions. Recall
that joint distributions for independent random variables
can be given simply by multiplying their CDFs; we want
also to study cases where random variables are not inde-
pendent.

Definition 19.5. Let X,Y be random variables. Their
joint CDF is given by

F (x, y) = P (X ≤ x, Y ≤ y)

In the discrete case, X and Y have a joint PMF given by

P (X = x, Y = y)

and in the continuous case, X and Y have a joint PDF
given by

f(x, y) =
∂

∂x∂y
F (x, y)

and we can compute

P ((X,Y ) ∈ B) =

∫∫
B

f(x, y) dxdy

Their separate CDFs and PMFs (e.g., P (X ≤ x)) are
referred to as marginal CDFs, PMFs, or PDFs. X and
Y are independent precisely when the the joint CDF is
equal to the product of the marginal CDFs:

F (x, y) = FX(x)FY (y)

14
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We can show that, equivalently, we can say

P (X = x, Y = y) = P (X = x)P (Y = y)

or

f(x, y) = fX(x)fY (y)

for all x, y ∈ R.

Definition 19.6. To get the marginal PMF or PDF of
a random variable X from its joint PMF or PDF with
another random variable Y , we can marginalize over Y
by computing

P (X = x) =
∑
y

P (X = x, Y = y)

or

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

Example. Let X ∼ Bern(p), X ∼ Bern(q). Suppose
they have joint PMF given by

Y = 0 Y = 1
X = 0 2/6 1/6 3/6
X = 1 2/6 1/6 3/6

4/6 2/6

Here we have computed the marginal probabilities (in the
margin), and they demonstrate that X and Y are inde-
pendent.

Example. Let us define the uniform distribution on the
unit square, {(x, y) : x, y ∈ [0, 1]}. We want the joint
PDF to be constant everywhere in the square and 0 oth-
erwise; that is,

f(x, y) =

{
c 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

Normalizing, we simply need c = 1
area = 1. It is apparent

that the marginal PDFs are both uniform.

Example. Let us define the uniform distribution on the
unit disc, {(x, y) : x2 + y2 ≤ 1}. Their joint PDF can be
given by

f(x, y) =

{
1
π x2 + y2 ≤ 1

0 otherwise

Given X = x, we have −
√

1− x2 ≤ y ≤
√

1− x2. We
might guess that Y is uniform, but clearly X and Y are
dependent in this case, and it turns out that this is not
the case.

Lecture 20 — 10/21/11

Definition 20.1. Let X and Y be random variables.
Then the conditional PDF of Y |X is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX|Y (x|y)fY (y)

fX(x)

Note that Y |X is shorthand for Y | X = x.

Example. Recall the PDF for our uniform distribution
on the disk,

f(x, y) =

{
1
π y2 = 1− x2

0 otherwise

and marginalizing over Y , we have

fX(x) =

∫ √1−x2

−
√
1−x2

1

π
dy =

2

π

√
1− x2

for −1 ≤ x ≤ 1. As a check, we could integrate this again
with respect to dx to ensure that it is 1. From this, it is
easy to find the conditional PDF,

fY |X(y|x) =
1/π

2
π

√
1− x2

=
1

2
√

1− x2

for −
√

1− x2 ≤ y ≤
√

1− x2. Since we are holding x
constant, we see that Y |X ∼ Unif(−

√
1− x2,

√
1− x2).

From these computations, it is clear, in many ways,
that X and Y are not independent. It is not true that
fX,Y = fXfY , nor that fY |X = fY

Proposition 20.2. Let X,Y have joint PDF f , and let
g : R2 → R. Then

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y) dxdy

This is LOTUS in two dimensions.

Theorem 20.3. If X,Y are independent random vari-
ables, then E(XY ) = E(X)E(Y ).

Proof. We will prove this in the continuous case. Using
LOTUS, we have

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y) dxdy

by independence =

∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y) dx dy

=

∫ ∞
−∞

E(X)yfY (y) dy

= E(X)E(Y )

as desired. �
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Example. Let X,Y ∼ Unif(0, 1) i.i.d.; we want to find
E|X−Y |. By LOTUS (and since the joint PDF is 1), we
want to integrate

E|X − Y | =
∫ 1

0

∫ 1

0

|x− y|dx dy

=

∫∫
x>y

(x− y) dx dy +

∫∫
x≤y

(y − x) dxdy

by symmetry = 2

∫∫
x>y

(x− y) dxdy

=

∫ 1

0

∫ 1

y

(x− y) dxdy

= 2

∫ 1

0

(
x2

2
− yx

)∣∣∣∣∣
1

y

dy

=
1

3

If we let M = max{X,Y } and L = min{X,Y }, then we
would have |X − Y | = M − L, and hence also

E(M − L) = E(M)− E(L) =
1

3

We also have

E(X + Y ) = E(M + L) = E(M) + E(L) = 1

This gives

E(M) =
2

3
E(L) =

1

3

Example (Chicken-Egg Problem). Suppose there are
N ∼ Pois(λ) eggs, each hatching with probability p, in-
dependent (these are Bernoulli). Let X be the number of
eggs that hatch. Thus, X|N ∼ Bin(N, p). Let Y be the
number that don’t hatch. Then X + Y = N .

Let us find the joint PMF of X and Y .

P (X = i,Y = j) =

∞∑
n=0

P (X = i, Y = j | N = n)P (N = n)

= P (X = i, Y = j | N = i+ j)P (N = i+ j)

= P (X = i | N = i+ j)P (N = i+ j)

=
(i+ j)!

i!j!
piqje−λ

λi+j

(i+ j)!

=

(
e−λp

(λp)i

i!

)(
e−λq

(λq)j

j!

)

In other words, the randomness of the number of eggs
offsets the dependence of Y on X given a fixed number of
X. This is a special property of the Poisson distribution.

Lecture 21 — 10/24/11

Theorem 21.1. Let X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2)

be independent random variables. Then X+Y ∼ N (µ1 +
µ2, σ

2
1 + σ2

2).

Proof. Since X and Y are independent, we can simply
multiply their MGFs. This is given by

MX+Y (t) = MX(t)MY (t)

= exp(µ1t+ σ1
t2

2
) exp(µ2t+ σ2

t2

2
)

= exp((µ1 + µ2)t+ (σ2
1 + σ2

2)
t2

2
)

which yields our desired result. �

Example. Let Z1, Z2 ∼ N (0, 1), i.i.d.; let us find
E|Z1 − Z2|. By the above, Z1 − Z2 ∼ N (0, 2). Let
Z ∼ N (0, 1). Then

E|Z1 − Z2| = E|
√

2Z|

=
√

2E|Z|

=

∫ ∞
−∞
|z| 1√

2π
e−z

2/2 dz

evenness = 2

∫ ∞
0

|z| 1√
2π
e−z

2/2 dz

=

√
2

π

Definition 21.2. Let X = (X1, . . . , Xk) be a multivari-
ate random variable, p = (p1, . . . , pk) a probability vector
with pj ≥ 0 and

∑
j pj = 1. The multinomial distribution

is given by assorting n objects into k categories, each ob-
ject having probability pj of being in category j, and tak-
ing the number of objects in each category, Xj . If X has
the multinomial distribution, we write X ∼ Multk(n,p).

The PMF of X is given by

P (X1 = n1, . . . , Xk = nk) =
n!

n1! · · ·nk!
pn1
1 · · · p

nk
k

if
∑
k nk = n, and 0 otherwise.

Observation 21.3. Let X ∼ Multk(n, p). Then the
marginal distribution of Xj is simply Xj ∼ Bin(n, pj),
since each object is either in j or not, and we have

E(Xj) = npj Var(Xj) = npj(1− pj)

Observation 21.4. If we “lump” some of our categories
together for X ∼ Multk(n, p), then the result is still
multinomial. That is, taking

Y = (X1, . . . , Xl−1, Xl + · · ·+Xk)

and
p′ = (p1, . . . , pl−1, pl + · · ·+ pk)

we have Y ∼ Multl(n, p
′), and this is true for any combi-

nations of lumpings.
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Observation 21.5. Let X ∼ Multk(n, p). Then given
X1 = n1,

(X2, . . . , Xk) ∼ Multk−1(n− n1, (p′2, . . . , p′k))

where
p′j =

pj
1− p1

=
pj

p2 + · · ·+ pk

This is symmetric for all j.

Definition 21.6. The Cauchy distribution is a distribu-
tion of T = X

Y with X,Y ∼ N (0, 1) i.i.d.

Note. The Cauchy distribution has no mean, but has the
property that an average of many Cauchy distributions is
still Cauchy.

Observation 21.7. Let us compute the PDF of X with
the Cauchy distribution. The CDF is given by

P (
X

Y
≤ t) = P (

X

|Y |
≤ t)

= P (X ≤ t|Y |)

=

∫ ∞
−∞

∫ t|y|

−∞

1√
2π
e−x

2/2 1√
2π
e−y

2/2 dxdy

=
1√
2π

∫ ∞
−∞

e−y
2/2

∫ t|y|

−∞

1√
2π
e−x

2/2 dxdy

=
1√
2π

∫ ∞
−∞

e−y
2/2Φ(t|y|) dy

=

√
2

π

∫ ∞
0

e−y
2/2Φ(ty) dy

There is little we can do to compute this integral. In-
stead, let us compute the PDF, calling the CDF above
F (t). Then we have

F ′(t) =

√
2

π

∫ ∞
0

ye−y
2/2 1√

2π
e−t

2y2/2 dy

=
1

π

∫ ∞
0

ye−(1+t
2)y2/2 dy

Substituting u =
(1 + t2)y2

2
=⇒ du = (1 + t2)y dy,

=
1

π(1 + t)2

We could also have performed this computation using the
Law of Total Probability. Let φ be the standard normal
PDF. We have

P (X ≤ t|Y |) =

∫ ∞
−∞

P (X ≤ t|Y | | Y = y)φ(y) dy

by independence =

∫ ∞
−∞

P (X ≤ ty)φ(y) dy

=

∫ ∞
−∞

Φ(ty)φ(y) dy

and then we proceed as before.

Lecture 22 — 10/26/11

Definition 22.1. The covariance of random variables X
and Y is

Cov(X,Y ) = E((X − EX)(Y − EY ))

Note. The following properties are immediately true of
covariance:

1. Cov(X,X) = Var(X)

2. Cov(X,Y ) = Cov(Y,X)

3. Cov(X,Y ) = E(XY )− E(X)E(Y )

4. ∀c ∈ R, Cov(X, c) = 0

5. ∀c ∈ R, Cov(cX, Y ) = cCov(X,Y )

6. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z)

The last two properties demonstrate that covariance is
bilinear. In general,

Cov

 m∑
i=1

aiXi,

n∑
j=1

bjYj

 =
∑
i,j

aibj Cov(Xi, Yj)

Observation 22.2. We can use covariance to compute
the variance of sums:

Var(X + Y ) = Cov(X,X) + Cov(X,Y )

+ Cov(Y,X) + Cov(Y, Y )

= Var(X) + 2 Cov(X,Y ) + Var(Y )

and more generally,

Var(
∑

X) =
∑

Var(X) + 2
∑
i<j

Cov(Xi, Xj)

Theorem 22.3. If X,Y are independent, then
Cov(X,Y ) = 0 (we say that they are uncorrelated).

Example. The converse of the above is false. Let Z ∼
N (0, 1), X = Z, Y = Z2, and let us compute the covari-
ance.

Cov(X,Y ) = E(XY )− (EX)(EY )

= E(Z3)− (EZ)(EZ2)

= 0

But X and Y are very dependent, since Y is a function
of X.

17
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Definition 22.4. The correlation of two random vari-
ables X and Y is

Cor(X,Y ) =
Cov(X,Y )

SD(X) SD(Y )

= Cov

(
X − EX
SD(X)

,
Y − EY
SD(Y )

)
The operation of

X − EX
SD(X)

is called standardization; it gives the result a mean of 0
and a variance of 1.

Theorem 22.5. |Cor(X,Y )| ≤ 1.

Proof. We could apply Cauchy-Schwartz to get this re-
sult immediately, but we shall also provide a direct proof.
WLOG, assume X and Y are standardized. Let ρ =
Cor(X,Y ). We have

Var(X + Y ) = Var(X) + Var(Y ) + 2ρ = 2 + 2ρ

and we also have

Var(X − Y ) = Var(X) + Var(Y )− 2ρ = 2− 2ρ

But since Var ≥ 0, this yields our result. �

Example. Let (X1, . . . , Xk) ∼ Multk(n, p). We shall
compute Cov(Xi, Xj) for all i, j. If i = j, then

Cov(Xi, Xi) = Var(Xi) = npi(1− pi)

Suppose i 6= j. We can expect that the covariance will be
negative, since more objects in category i means less in
category j. We have

Var(Xi+Xj) = npi(1− pi) +npj(1− pj) + 2 Cov(Xi, Xj)

But by “lumping” i and j together, we also have

Var(Xi +Xj) = n(pi + pj)(1− (pi + pj))

Then solving for c, we have

Cov(Xi, Xj) = −npipj

Note. Let A be an event and IA its indicator random
variable. It is clear that

InA = IA

for any n ∈ N. It is also clear that

IAIB = IA∩B

Example. Let X ∼ Bin(n, p). Write X = X1 + · · ·+Xn

where the Xj are i.i.d. Bern(p). Then

Var(Xj) = EX2
j − (EXj)

2

= p− p2

= p(1− p)

It follows that

Var(X) = np(1− p)

since Cor(Xi, Xj) = 0 for i 6= j by independence.

Lecture 23 — 10/28/11

Example. Let X ∼ HGeom(w, b, n). Let us write p =
w
w+b and N = w+b. Then we can write X = X1+· · ·+Xn

where the Xj are Bern(p). (Note, however, that unlike
with the binomial, the Xj are not independent.) Then

Var(X) = nVar(X1) + 2

(
n

2

)
Cov(X1, X2)

= np(1− p) + 2

(
n

2

)
Cov(X1, X2)

Computing the covariance, we have

Cov(X1, X2) = E(X1X2)− (EX1)(EX2)

=
w

w + b

(
w − 1

w + b− 1

)
−
(

w

w + b

)2

=
w

w + b

(
w − 1

w + b− 1

)
− p2

and simplifying,

Var(X) =
N − n
N − 1

np(1− p)

The term N−n
N−1 is called the finite population correction;

it represents the “offset” from the binomial due to lack of
replacement.

Theorem 23.1. Let X be a continuous random variable
with PDF fX , and let Y = g(X) where g is differentiable
and strictly increasing. Then the PDF of Y is given by

fY (y) = fX(x)
dx

dy

where y = g(x) and x = g−1(y). (Also recall from calcu-

lus that dx
dy =

(
dy
dx

)−1
.)

Proof. From the CDF of Y , we get

P (Y ≤ y) = P (g(X) ≤ y)

18
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= P (X ≤ g−1(y))

= FX(g−1(y))

= FX(x)

Then, differentiating, we get by the Chain Rule that

fY (y) = fX(x)
dx

dy
�

Example. Consider the log normal distribution, which
is given by Y = eZ for Z ∼ N (0, 1). We have

fY (y) =
1√
2π
e−z

2/2

To put this in terms of y, we substitute z = ln y. More-
over, we know that

dy

dz
= ez = y

and so,

fY (y) =
1

y

1√
2π
e− ln y/2

Theorem 23.2. Suppose that X is a continuous random
variable in n dimensions, Y = g(X) where g : Rn → Rn
is continuously differentiable and invertible. Then

fY (y) = fX(x)

∣∣∣∣det
dx

dy

∣∣∣∣
where

dx

dy
=


∂x1
∂y1

· · · ∂xn
∂yn

...
. . .

...
∂xn
∂y1

· · · ∂xn
∂yn


is the Jacobian matrix.

Observation 23.3. Let T = X+Y , where X and Y are
independent. In the discrete case, we have

P (T = t) =
∑
x

P (X = x)P (Y = t− x)

For the continuous case, we have

fT (t) = (fX ∗ fY )(t)

=

∫ ∞
−∞

fX(x)fY (t− x) dx

This is true because we have

FT (t) = P (T ≤ t)

=

∫ ∞
−∞

P (X + Y ≤ t | X = x)fX(x) dx

=

∫ ∞
−∞

FY (t− x)fX(x) dx

Then taking the derivative of both sides,

fT (t) =

∫ ∞
−∞

fX(x)fY (t− x) dx

We now briefly turn our attention to proving the exis-
tence of objects with some desired property A using prob-
ability. We want to show that P (A) > 0 for some random
object, which implies that some such object must exist.

Reframing this question, suppose each object in our
universe of objects has some kind of “score” associated
with this property; then we want to show that there is
some object with a “good” score. But we know that there
is an object with score at least equal to the average score,
i.e., the score of a random object. Showing that this aver-
age is “high enough” will prove the existence of an object
without specifying one.

Example. Suppose there are 100 people in 15 commit-
tees of 20 people each, and that each person is on exactly
3 committees. We want to show that there exist 2 com-
mittees with overlap ≥ 3. Let us find the average of two
random committees. Using indicator random variables
for the probability that a given person is on both of those
two committees, we get

E(overlap) = 100 ·
(
3
2

)(
15
2

) =
300

105
=

20

7

Then there exists a pair of committees with overlap of at
least 20

7 . But since all overlaps must be integral, there is
a pair of committees with overlap ≥ 3.

Lecture 24 — 10/31/11

Definition 24.1. The beta distribution, Beta(a, b) for
a, b > 0, is defined by PDF

f(x) =

{
cxa−1(1− x)b−1 0 < x < 1

0 otherwise

where c is a normalizing constant (defined by the beta
function).

The beta distribution is a flexible family of continuous
distributions on (0, 1). By flexible, we mean that the ap-
pearance of the distribution varies significantly depending
on the values of its parameters. If a = b = 1, the beta
reduces to the uniform. If a = 2 and b = 1, the beta ap-
pears as a line with positive slope. If a = b = 1

2 , the beta
appears to be concave-up and parabolic; if a = b = 2, it
is concave down.

The beta distribution is often used as a prior distri-
bution for some parameter on (0, 1). In particular, it is
the conjugate prior to the binomial distribution.
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Observation 24.2. Suppose that, based on some data,
we have X | p ∼ Bin(n, p), and that our prior distribu-
tion for p is p ∼ Beta(a, b). We want to determine the
posterior distribution of p, p | X. We have

f(p | X = k) =
P (X = k | p)f(p)

P (X = k)

=

(
n
k

)
pk(1− p)n−kcpa−1(1− p)b−1

P (X = k)

∝ cpa+k−1(1− p)b+n−k−1

So, we have p | X ∼ Beta(a+X, b+ n−X). We call the
Beta the conjugate prior to the binomial because both its
prior and posterior distribution are Beta.

Observation 24.3. Let us find a specific case of the nor-
malizing constant

c−1 =

∫ 1

0

xk(1− x)n−k dx

To do this, consider the story of “Bayes’ billiards.” Sup-
pose we have n+ 1 billiard balls, all white; then we paint
one pink and throw them along (0, 1) all independently.
Let X be the number of balls to the left of the pink ball.
Then conditioning on where the pink ball ends up, we
have

P (X = k) =

∫ 1

0

P (X = k | p) f(p)︸︷︷︸
1

dp

=

∫ 1

0

(
n

k

)
pk(1− p)n−k dp

where, given the pink ball’s location, X is simply binomial
(each white ball has an independent chance p of landing
to the left). Note, however, that painting a ball pink and
then throwing the balls along (0, 1) is the same as throw-
ing the balls along the real line and then painting one
pink. But then it is clear that there is an equal chance
for any given number from 0 to n of white balls to be to
the pink ball’s left. So we have∫ 1

0

(
n

k

)
pk(1− p)n−k dp =

1

n+ 1

Lecture 25 — 11/2/11

Definition 25.1. The gamma function is given by

Γ(a) =

∫ ∞
0

xa−1e−x dx

=

∫ ∞
0

xae−x
1

x
dx

for any a > 0. The gamma function is a continuous ex-
tension of the factorial operator on natural numbers. For
n a positive integer,

Γ(n) = (n− 1)!

More generally,

Γ(x+ 1) = xΓ(x)

Definition 25.2. The standard gamma distribution,
Gamma(a, 1), is defined by PDF

1

Γ(a)
xa−1e−x

for x > 0, which is simply the integrand of the normalized
Gamma function. More generally, let X ∼ Gamma(a, 1)
and Y = X

λ . We say that Y ∼ Gamma(a, λ). To get the
PDF of Y , we simply change variables; we have x = λy,
so

fY (y) = fX(x)
dx

dy

=
1

Γ(a)
(λy)ae−λy

1

λy
λ

=
1

Γ(a)
(λy)ae−λy

1

y

Definition 25.3. We define a Poisson process as a pro-
cess in which events occur continuously and indepen-
dently such that in any time interval t, the number of
events which occur is Nt ∼ Pois(λt) for some fixed rate
parameter λ.

Observation 25.4. The time T1 until the first event oc-
curs is Expo(λ):

P (T1 > t) = P (Nt = 0) = e−λt

which means that

P (T1 ≤ t) = 1− e−λt

as desired. More generally, the time until the next event
is always Expo(λ); this is clear from the memoryless prop-
erty.

Proposition 25.5. Let Tn be the time of the nth event
in a Poisson process with rate parameter λ. Then, for Xj

i.i.d. Expo(λ), we have

Tn =

n∑
j=1

Xj ∼ Gamma(n, λ)

The exponential distribution is the continuous ana-
logue of the geometric distribution; in this sense, the
gamma distribution is the continuous analogue of the neg-
ative binomial distribution.
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Proof. One method of proof, which we will not use,
would be to repeatedly convolve the PDFs of the i.i.d. Xj .
Instead, we will use MGFs. Suppose that the Xj are i.i.d
Expo(1); we will show that their sum is Gamma(n, 1).

The MGF of Xj is given by

MXj (t) =
1

1− t

for t < 1. Then the MGF of Tn is

MTn(t) =

(
−1

1

)n
also for t < 1. We will show that the gamma distribution
has the same MGF.

Let Y ∼ Gamma(n, 1). Then by LOTUS,

E(etY ) =
1

Γ(n)

∫ ∞
0

etyyne−y
1

y
dy

=
1

Γ(n)

∫ ∞
0

yne(1−t)y
1

y
dy

Changing variables, with x = (1− t)y, then

E(etY ) =
(1− t)−n

Γ(n)

∫ ∞
0

xne−x
1

x
dx

=

(
−1

1

)n
Γ(n)

Γ(n)

=

(
−1

1

)n
�

Note that this is the MGF for any n > 0, although the
sum of exponentials expression requires integral n.

Observation 25.6. Let us compute the moments of
X ∼ Gamma(a, 1). We want to compute E(Xc). We
have

E(Xc) =
1

Γ(a)

∫ ∞
0

xcxae−x
1

x
dx

=
1

Γ(a)

∫ ∞
0

xa+ce−x
1

x
dx

=
Γ(a+ c)

Γ(a)

=
a(a+ 1) · · · (a+ c)Γ(a)

Γ(a)

= a(a+ 1) · · · (a+ c)

If instead, we take X ∼ Gamma(a, λ), then we will have

E(Xc) =
a(a+ 1) · · · (a+ c)

λc

Lecture 26 — 11/4/11

Observation 26.1 (Gamma-Beta). Let us take X ∼
Gamma(a, λ) to be your waiting time in line at the bank,
and Y ∼ Gamma(b, λ) your waiting time in line at the
post office. Suppose that X and Y are independent.
Let T = X + Y ; we know that this has distribution
Gamma(a+ b, λ).

Let us compute the joint distribution of T and of
W = X

X+Y , the fraction of time spent waiting at the
bank. For simplicity of notation, we will take λ = 1. The
joint PDF is given by

fT,W (t, w) = fX,Y (x, y)

∣∣∣∣det
∂(x, y)

∂(t, w)

∣∣∣∣
=

1

Γ(a)Γ(b)
xae−xybe−y

1

xy

∣∣∣∣det
∂(x, y)

∂(t, w)

∣∣∣∣
We must find the determinant of the Jacobian (here ex-
pressed in silly-looking notation). We know that

x+ y = t
x

x+ y
= w

Solving for x and y, we easily find that

x = tw y = t(1− w)

Then the determinant of our Jacobian is given y∣∣∣∣ w t
1− w −t

∣∣∣∣ = −tw − t(1− w) = −t

Taking the absolute value, we then get

fT,W (t, w) =
1

Γ(a)Γ(b)
xae−xybe−y

1

xy
t

=
1

Γ(a)Γ(b)
wa−1(1− w)b−1ta+be−t

1

t

=
Γ(a+ b)

Γ(a)Γ(b)
wa−1(1− w)b−1

1

Γ(a+ b)
ta+be−t

1

t

This is a product of some function of w with the PDF of
T , so we see that T and W are independent. To find the
marginal distribution of W , we note that the PDF of T
integrates to 1 just like any PDF, so we have

fW (w) =

∫ ∞
−∞

fT,W (t, w) dt

=
Γ(a+ b)

Γ(a)Γ(b)
wa−1(1− w)b−1

This yields W ∼ Beta(a, b) and also gives the normalizing
constant of the beta distribution.

It turns out that if X were distributed according to
any other distribution, we would not have independence,
but proving so is out of the scope of the course.
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Observation 26.2. Let us find E(W ) for W ∼
Beta(a, b). Let us write W = X

X+Y with X and Y de-
fined as above. We have

E

(
−1

X

)
=

E(X)

E(X + Y )
=

a

a+ b

Note that in general, the first equality is false! However,
because X+Y and X

X+Y , they are uncorrelated and hence
linear. So

E

(
−1

X

)
E(X + Y ) = E(X)

Definition 26.3. Let X1, . . . , Xn be i.i.d. The order
statistics of this sequence is

X(1) ≤ X(2) ≤ · · · ≤ X(n)

where
X(1) = min{X1, . . . , Xn}

X(n) = max{X1, . . . , Xn}

and the remaining X(j) fill out the order. If n is odd, we
have the median X( −1

n+1 ). The order statistics lets us find

arbitrary quantiles for the sequence.

The order statistics are hard to work with because
they are dependent (and positively correlated), even
though we started with i.i.d. random variables. They are
particularly tricky in the discrete case because of ties, so
we will assume that the Xj are continuous.

Observation 26.4. Let X1, . . . , Xn be i.i.d. continuous
with PDF fj and CDF Fj . We want to find the CDF and
PDF of X(j). For the CDF, we have

P (X(j) ≤ x) = P (at least j of the Xj ’s are ≤ x)

=

n∑
k=j

(
n

k

)
P (X1 ≤ x)k(1− P (X1 ≤ x))n−k

=

n∑
k=j

(
n

k

)
F (x)k(1− F (x))n−k

Turning now to the PDF, recall that a PDF gives a den-
sity rather than a probability. We can multiply the PDF
of X(j) at a point x by a tiny interval dx about x in or-
der to obtain the probability that X(j) is in that interval.
Then we can simply count the number of ways to have
one of the Xi be in that interval and precisely j−1 of the
Xi below the interval. So,

fX(j)
(x) dx = n(f(x) dx)

(
n− 1

j − 1

)
F (x)j−1(1− F (x))n−j

fX(j)
(x) = n

(
n− 1

j − 1

)
F (x)j−1(1− F (x))n−jf(x)

Example. Let U1, . . . , Un be i.i.d. Unif(0, 1), and let us
determine the distribution of U(j). Applying the above
result, we have

fU(j)
(x) = n

(
n− 1

j − 1

)
xj−1(1− x)n−j

for 0 < x < 1. Thus, we have U(j) ∼ Beta(j, n − j + 1).
This confirms our earlier result that, for U1 and U2 i.i.d.
Unif(0, 1), we have

E|U1 − U2| = E(Umax)− E(Umin) =
1

3

because Umax ∼ Beta(2, 1) and Umin ∼ Beta(1, 2), which
have means 2

3 and 1
3 respectively.

Lecture 27 — 11/7/11

Example (Two Envelopes Paradox). Suppose we have
two envelopes containing sums of money X and Y , and
suppose we are told that one envelope has twice as much
money as the next. We choose one envelope; by symme-
try, take X WLOG. Then it appears that Y has equal
probabilities of containing X

2 and of 2X, and thus av-
erages 1.25X. So it seems that we ought to switch to
envelope Y . But then, by the same reasoning, it would
seem we ought to switch back to X.

We can argue about this paradox in two ways. First,
we can say, by symmetry, that

E(X) = E(Y )

which is simple and straightforward. We might also, how-
ever, try to condition on the value of Y with respect to
X using the Law of Total Probability

E(Y ) = E(Y | Y = 2X)P (Y = 2X)

+ E(Y | Y =
X

2
)P (Y =

X

2
)

= E(2X)
1

2
+ E(

X

2
)
1

2

=
5

4
E(X)

Assuming that X and Y are not 0 or infinite, these can-
not both be correct, and the argument from symmetry is
immediately correct.

The flaw in our second argument is that, in general,

E(Y | Y = Z) 6= E(Z)

because we cannot drop the condition that Y = Z; we
must write

E(Y | Y = Z) = E(Z | Y = Z)

In other words, if we let I be the indicator for Y = 2X,
we are saying that X and I are dependent.
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Example (Patterns in coin flips). Suppose we repeat-
edly flip a fair coin. We want to determine how many
flips it takes until HT is observed (including the H and
T ); similarly, we can ask how many flips it takes to get
HH. Let us call these random variables WHT and WHH

respectively. Note that, by symmetry,

E(WHH) = E(WTT )

and

E(WHT ) = E(WTH)

Let us first consider WHT . This is the time to the first
H, which we will call W1, plus the time W2 to the next
T . Then we have

E(WHT ) = E(W1) + E(W2) = 2 + 2 = 4

because Wi − 1 ∼ Geom( 1
2 ).

Now let us consider WHH . The distinction here is that
no “progress” can be easily made; once we get a heads,
we are not decidedly halfway to the goal, because if the
next flip is tails, we lose all our work. Instead, we make
use of conditional expectation. Let Hi be the event that
the ith toss is heads, Ti = HC

i the event that it is tails.
Then

E(WHH) = E(WHH | H1)
1

2
+ E(WHH | T1)

1

2

=

(
E(WHH | H1, H2)

1

2
+ E(WHH | H1, T2)

1

2

)
1

2

+ (1 + E(WHH))
1

2

=

(
1 + (2 + E(WHH))

1

2

)
1

2
+ (1 + E(WHH))

1

2

Solving for E(WHH) gives

E(WHH) = 6

So far, we have been conditioning expectations on
events. Let X and Y be random variables; then this kind
of conditioning includes computing E(Y | X = x). If Y
is discrete, then

E(Y | X = x) =
∑
y

yP (Y = y | X = x)

and if Y is continuous,

E(Y | X = x) =

∫ ∞
−∞

yfY |X=x(y|x) dy

if X continuous =

∫ ∞
−∞

y
fX,Y (x, y)

fX(x)
dy

Definition 27.1. Now let us write

g(x) = E(Y | X = x)

Then
E(Y |X) = g(X)

So, suppose for instance that g(x) = x2; then g(X) = X2.
We can see that E(Y |X) is a random variable and a func-
tion of X. This is a conditional expectation.

Example. Let X and Y be i.i.d. Pois(λ). Then

E(X + Y | X) = E(X|X) + E(Y |X)

X is a function of itself = X + E(Y |X)

X and Y independent) = X + E(Y )

= X + λ

Note that, in general,

E(h(X) | X) = h(X)

Now let us determine E(X | X + Y ). We can do this
in two different ways. First, let T = X + Y and let us
find the conditional PMF.

P (X = k | T = n) =
P (T = n | X = k)P (X = k)

P (T = n)

=
P (Y = n− k)P (X = k)

P (T = n)

=

e−λλn−k

(n−k)! e
−λ λk

k!

e−2λ (2λ)n

n!

=

(
n

k

)(
−1

1

)n
That is, X | T = n ∼ Bin(n, 12 ). Thus, we have

E(X | T = n) =
n

2

which means that

E(X|T ) =
T

2

In our second method, first we note that

E(X | X + Y ) = E(Y | X + Y )

by symmetry (since they are i.i.d.). We have

E(X | X + Y ) + E(Y | X + Y ) = E(X + Y | X + Y )

= X + Y

= T

So, without even using the Poisson, E(X|T ) = T
2 .

Proposition 27.2 (Adam’s Law). Let X and Y be ran-
dom variables. Then

E(E(Y |X)) = E(Y )
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Lecture 28 — 11/9/11

Example. Let X ∼ N (0, 1), Y = X2. Then

E(Y |X) = E(X2|X) = X2 = Y

On the other hand,

E(X|Y ) = E(X|X2) = 0

since, after observing X2 = a, then X = ±
√
a with equal

likelihood of being positive or negative (since the standard
normal is symmetric about 0). Note that this doesn’t
mean X and X2 are independent.

Example. Suppose we have a stick, break off a random
piece, and then break off another random piece. We can
model this as X ∼ Unif(0, 1), Y |X ∼ Unif(0, X). We
know that

E(Y | X = x) =
x

2

and hence

E(Y |X) =
X

2

Note that

E(E(Y |X)) =
1

4
= E(Y )

That is, on average, we take half the stick and then take
half of that stick, which matches our intuition.

Proposition 28.1. Let X and Y be random variables.

1. E(h(X)Y | X) = h(X)E(Y |X).

2. E(Y |X) = E(Y ) if X and Y are independent (the
converse, however, is not true in general).

3. E(E(Y |X)) = E(Y ). This is called iterated expec-
tation or Adam’s Law; it is usually more useful to
think of this as computing E(Y ) by choosing a sim-
ple X to work with.

4. E((Y − E(Y |X))h(X)) = 0. In words, the residual
(i.e., Y − E(Y |X)) is uncorrelated with h(X):

Cov(Y − E(Y |X), h(X))

= E((Y − E(Y |X))h(X))︸ ︷︷ ︸
0

−E(Y − E(Y |X))︸ ︷︷ ︸
0

E(h(X))

To better understand (4), we can think of the func-
tions X and Y as vectors (the vector space has inner prod-
uct 〈X,Y 〉 = E(XY )). We can think of E(Y |X) as the
projection of Y onto the plane consisting of all functions
of X. In this picture, the residual vector Y − E(Y |X) is
orthogonal to the plane of all functions of X, and thus
〈Y − E(Y |X), h(X)〉 = 0.

Proof. We will prove all the properties above.

1. Since we know X, we know h(X), and this is equiv-
alent to factoring out at constant (by linearity).

2. Immediate.

3. We will prove the discrete case. Let E(Y |X) =
g(X). Then by discrete LOTUS, we have

Eg(X) =
∑
x

g(x)P (X = x)

=
∑
x

E(Y | X = x)P (X = x)

=
∑
x

∑
y

yP (Y = y | X = x)

P (X = x)

=
∑
x

∑
y

yP (Y = y | X = x)P (X = x)


conditional PMF times marginal PMF = joint PMF

=
∑
x

∑
y

yP (Y = y,X = x)

=
∑
y

∑
x

yP (Y = y,X = x)

=
∑
y

yP (Y = y)

= E(Y )

4. We have

E((Y − E(Y |X))h(X))

= E(Y h(X))− E(E(Y |X)h(X))

= E(Y h(X))− E(E(h(X)Y |X))

= E(Y h(X))− E(Y h(X))

= 0

�

Definition 28.2. We can define the conditional variance
much as we did conditional expectation. Let X and Y be
random variables. Then

Var(Y |X) = E(Y 2|X)− (E(Y |X))2

= E((Y − E(Y |X))2 | X)

Proposition 28.3 (Eve’s Law).

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X))

Example. Suppose we have three populations, where
X = 1 is the first, X = 2 the second, and X = 3 the
third, and suppose we know the mean and variance of
the height Y of individuals in each of the separate pop-
ulations. Then Eve’s law says we can take the variance
of all three means, and add it to the mean of all three
variances, to get the total variance.
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Example. Suppose we choose a random city and then
choose a random sample of n people in that city. Let X
be the number of people with a particular disease, and
Q the proportion of people in the chosen city with the
disease. Let us determine E(X) and Var(X), assuming
Q ∼ Beta(a, b) (a mathematically convenient, flexible dis-
tribution).

Assume that X|Q ∼ Bin(n,Q). Then

E(X) = E(E(X|Q))

= E(nQ)

= n
a

a+ b

and

Var(X) = E(Var(X|Q)) + Var(E(X|Q))

= E(nQ(1−Q)) + n2 Var(Q)

We have

E(Q(1−Q)) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

qa(1− q)b dq

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

=
abΓ(a+ b)

(a+ b+ 1)(a+ b)Γ(a+ b)

=
ab

(a+ b)(a+ b+ 1)

and

Var(Q) =
µ(1− µ)

a+ b+ 1

where µ = a
a+b . This gives us all the information we need

to easily compute Var(X).

Lecture 29 — 11/14/11

Example. Consider a store with a random number N
of customers. Let Xj be the amount the jth customer
spends, with E(Xj) = µ and Var(Xj) = σ2. Assume
that N,X1, X2, . . . are independent. We want to deter-
mine the mean and variance of

X =

N∑
j=1

Xj

We might, at first, mistakenly invoke linearity to claim
that E(X) = Nµ. But this is incoherent; the LHS is a
real number whereas the RHS is a random variable. How-
ever, this error highlights something useful: we want to

make N a constant, so let us condition on N . Then using
the Law of Total Probability, we have

E(X) =

∞∑
n=0

E(X | N = n)P (N = n)

=

∞∑
n=0

µnP (N = n)

= µE(N)

Note that we can drop the conditional because N and the
Xj are independent; otherwise, this would not be true.

We could also apply Adam’s Law to get

E(X) = E(E(X|N)) = E(µN) = µE(N)

To get the variance, we apply Eve’s Law to get

Var(X) = E(Var(X|N)) + Var(E(X|N))

= E(Nσ2) + Var(µN)

= σ2E(N) + µ2 Var(N)

We now turn our attention to statistical inequalities.

Theorem 29.1 (Cauchy-Schwartz Inequality).

|E(XY )| ≤
√
E(X2)E(Y 2)

If X and Y are uncorrelated, E(XY ) = (EX)(EY ), so
we don’t need inequality.

We will not prove this inequality in general. However,
if X and Y have mean 0, then

|Corr(X,Y )| =

∣∣∣∣∣ E(XY )√
E(X2)E(Y 2)

∣∣∣∣∣ ≤ 1

Theorem 29.2 (Jensen’s Inequality). If g : R → R is
convex (i.e., g′′ > 0), then

Eg(X) ≥ g(EX)

If g ic concave (i.e., g′′ < 0), then

Eg(X) ≤ g(EX)

Example. If X is positive, then

E(
1

X
) ≥ 1

EX

and
E(lnX) ≤ ln(EX)

Proof. It is true of any convex function g that

g(x) ≥ a+ bx
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if a + bx is the line tangent to any point (x0, g(x0)) on
the graph of g. Take x0 = E(X). Then we have

g(x) ≥ a+ bx

g(X) ≥ a+ bX

Eg(X) ≥ E(a+ bX)

= a+ bE(X)

= g(EX)

�

Theorem 29.3 (Markov Inequality).

P (|X| ≥ a) ≤ E|X|
a

for any a > 0.

Proof. Let I|X|≥a be the indicator random variable for
the event |X| ≥ a. It is always true that

aI|X|≥a ≤ |X|

because if I|X|≥a = 1, then |X| ≥ a and then inequality
holds, and if I|X|≥a = 0, the inequality is trivial since
|X| ≥ 0. Then, taking expected values, we have

aEI|X|≥a ≤ E|X|

as desired. �

Example. Suppose we have 100 people. It is easily pos-
sible that at least 95% of the people are younger than
average in the group. However, it is not possible that at
least 50% are older than twice the average age.

Theorem 29.4 (Chebyshev Inequality).

P (|X − µ| ≥ a) ≤ Var(X)

a2

for µ = EX and a > 0. Alternatively, we can write

P (|X − µ| ≥ cSD(X)) ≤ 1

c2

for c > 0.

Proof.

P (|X − µ| ≤ a) = P ((X − µ)2 ≤ a2)

by Markov ≤ E((X − µ)2)

a2

=
Var(X)

a2
�

Lecture 30 — 11/16/11

Definition 30.1. Let X1, X2, . . . be i.i.d. random vari-
ables with mean µ and variance σ2. The sample mean of
the first n random variables is

X̄n =
1

n

n∑
j=1

Xj

We want to answer the question: What happens to
the sample mean when n gets large?

Theorem 30.2 (Law of Large Numbers). With probabil-
ity 1, as n→∞,

X̄n → µ

pointwise. That is, the sample mean of a collection of
i.i.d. random variables converges to the true mean.

Example. Suppose that Xj ∼ Bern(p). The Law of
Large Numbers says that 1

n (X1 + · · ·+Xn)→ p.

Note that the Law of Large Numbers says nothing
about the value of any individual Xj . For instance, in the
above example with simple success and failures (which
we may model as a series of coin flips), flipping heads
many times does not mean that a tails is on its way.
Rather, it means that the large but finite string of heads
is “swamped” by the infinite flips yet to come.

Theorem 30.3 (Weak Law of Large Numbers). For any
c > 0, as n→ 0,

P (|X̄n − µ| > c)→ 0

Proof. (of Weak LoLN) By Chebyshev’s inequality,

P (|X̄n − µ| > c) ≤ Var(X̄n)

c2

=
1
n2nσ

2

c2

=
σ2

nc2

→ 0 �

Note that the Law of Large Numbers does not tell us
anything about the distribution of X̄n. To study this dis-
tribution, and in particular the rate at which X̄n → 0, we
might consider

ni(X̄n − µ)

for various values of i.

Theorem 30.4 (Central Limit Theorem). As n→∞,

n1/2
(X̄n − µ)

σ
→ N (0, 1)

in distribution; that is, the CDFs converge. Equivalently,∑n
j=1Xj − nµ√

nσ
→ N (0, 1)
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Proof. We will prove the CLT assuming that the MGF
M(t) of the Xj exists (note that we have been assuming
all along that the first two moments exist). We will show
that the MGFs converge, which will imply that the CDFs
converge (however, we will not show this fact).

Let us assume WLOG that µ = 0 and σ = 1. Let

Sn =

n∑
j=1

Xj

We will show that the MGF of Sn√
n

converges to the MGF

of N (0, 1). We have

E(etSn/
√
n)

uncorrelated since independent

= E(etX1/
√
n) · · ·E(etXn/

√
n)

= E(etXj/
√
n)n

= M

(
t√
n

)n
Taking the limit results in the indeterminate form 1∞,
which is hard to work with. Instead, we take the log of
both sides and then take the limit, to get

lim
n→∞

n lnM

(
t√
n

)
= lim
n→∞

lnM( t√
n

)

1
n

substitute y =
1√
n

= lim
y→0

lnM(ty)

y2

L’Hopital’s = lim
y→0

tM ′(ty)

2yM(ty)

[M(0) = 1,M ′(0) = 0] =
t

2
lim
y→0

M ′(ty)

y

L’Hopital’s =
t2

2
lim
y→0

M ′′(ty)

1

=
t2

2

= ln et
2/2

and et
2/2 is the N (0, 1) MGF. �

Corollary 30.5. Let X ∼ Bin(n, p) with X =
∑n
j=1Xj,

Xj ∼ Bern(p) i.i.d.

P (a ≤ X ≤ b) = P

(
a− np
√
npq

≤ X − np
√
npq

≤ b− np
√
npq

)

≈ Φ

(
−1

b− np

)
− Φ

(
−1

a− np

)

The Poisson approximation works well when n is large,
p is small, and λ = np is moderate. In contrast, the Nor-
mal approximation works well when n is large and p is
near 1

2 (to match the symmetry of the normal).
It seems a little strange that we are approximating a

discrete distribution with a continuous distribution. In
general, to correct for this, we can write

P (X = a) = P (a− ε < X < a+ ε)

where (a− ε, a+ ε) contains only a

Lecture 31 — 11/18/11

Definition 31.1. Let V = Z2
1 + · · ·+Z2

n where the Zj ∼
N (0, 1) i.i.d. Then V has the chi-squared distribution
with n degrees of freedom, V ∼ χ2

n.

Observation 31.2. It is true, but we will not prove, that

χ2
1 = Gamma(

1

2
,

1

2
)

Since χ2
n =

∑
χ2
1, we have

χ2
n = Gamma(

n

2
,

1

2
)

Definition 31.3. Let Z ∼ N (0, 1) and V ∼ χ2
n be inde-

pendent. Let

T =
Z√
V/n

Then T has the Student-t distribution with n degrees of
freedom, T ∼ tn.

Observation 31.4. The Student-t is symmetric; that is
−T ∼ tn. Note that if n = 1, then T is the ratio of two
i.i.d. standard normals, so T becomes the Cauchy distri-
bution (and hence has no mean).

If n ≥ 2, then

E(T ) = E(Z)E(
1√
V/n

) = 0

Note that in general, T ∼ tn will only have moments up
to (but not including) the nth.

Observation 31.5. We proved that

E(Z2) = 1, E(Z4) = 1 · 3, E(Z6) = 1 · 3 · 5

using MGFs. We can also prove this by noting that

E(Z2n) = E((Z2)n)

and that Z2 ∼ χ2
1 = Gamma( 1

2 ,
1
2 ). Then we can simply

use LOTUS to get our desired mean.
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Observation 31.6. The Student-t distribution looks
much like the normal distribution but is heavier-tailed,
especially if n is small. As n → ∞, we claim that the
Student-t converges to the standard normal.

Let

Tn =
Z√
Vn/n

where Z1, Z2, . . . ∼ N (0, 1) i.i.d., Vn = Z2
1 + · · ·+Z2

n, and
Z ∼ N (0, 1) independent of the Zj . By the Law of Large
numbers, with probability 1,

lim
n→∞

Vn
n

= 1

So Tn → Z, which is standard normal as desired.

Definition 31.7. Let X = (X1, . . . , Xk) be a random
vector. We say that X has the multivariate normal
distribution (MVN) if every linear combination

t1X1 + · · · tkXk

of the Xj is normal.

Example. Let Z, W be i.i.d. N (0, 1). Then (Z +
2W, 3Z + 5W ) is MVN, since

s(Z + 2W ) + t(3Z + 5W ) = (s+ 3t)Z + (2s+ 5t)W

is a sum of independent normals and hence normal.

Example. Let Z ∼ N (0, 1). Let S be a random sign (±1
with equal probabilities) independent of Z. Then Z and
SZ are marginally standard normal. However, (Z, SZ) is
not multivariate normal, since Z + SZ is 0 with proba-
bility 1

2 .

Observation 31.8. Recall that the MGF for X ∼
N (µ, σ2) is given by

E(etX) = etµ+t
2σ2/2

Suppose that X = (X1, . . . , Xk) is MVN. Let µj = EXj .
Then the MGF of X is given by

E(et1X1+···+tkXk)

= exp(t1µ1 + · · ·+ tkµk +
1

2
Var(t1X1 + · · ·+ tkXk))

Theorem 31.9. Let X = (X1, . . . , Xk) be MVN. Then
within X, uncorrelated implies independence. For in-
stance, if we write X = (X1,X2), if every component
of X1 is uncorrelated with every component of X2, then
X1 is independent of X2.

Example. Let X, Y be i.i.d. N (0, 1). Then (X+Y,X−
Y ) is MVN. We also have that

Cov(X + Y,X − Y )

= Var(X) + Cov(X,Y )− Cov(X,Y )−Var(Y )

= 0

So by our above theorem, X+Y and X−Y are indepen-
dent.

Lecture 32 — 11/21/11

Definition 32.1. Let X0, X1, X2, . . . be sequence of ran-
dom variables. We think of Xn as the state of a finite
system at a discrete time n (that is, the Xn have discrete
indices and each has finite range). The sequence has the
Markov property if

P (Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j | Xn = i)

In casual terms, in a system with the Markov property,
the past and future are conditionally independent given
the present. Such a system is called a Markov chain.

If P (Xn+1 = j | Xn = i) does not depend on time n,
then we denote

qij := P (Xn+1 = j | Xn = i)

called the transition probability, and we call the sequence
a homogenous Markov chain.

To describe a homogenous Markov chain we simply
need to show the states of the process and the transi-
tion probabilities. We could, instead, array the qij ’s as a
matrix,

Q =
(
qij
)

called the transition matrix.

Note. More generally, we could consider continuous sys-
tems (i.e., spaces) at continous times and more broadly
study stochastic processes. However, in this course, we
will restrict our study to homogenous Markov chains.

Example. The following diagram describes a (homoge-
nous) Markov chain:

1 2 3 41/3
2/3

1/2
1/2

1

1/2

1/4

1/4

We could alternatively describe the same Markov chain
by specifying its transition matrix

Q =


1
3

2
3 0 0

1
2 0 1

2 0
0 0 0 1
1
2 0 1

4
1
4
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Observation 32.2. Suppose that at time n, Xn has dis-
tribution s (a row vector in the transition matrix, which
represents the PMF). Then

P (Xn+1 = j) =
∑
i

P (Xn+1 = j | Xn = i)P (Xn = i)

=
∑
i

qijsi

= sQ

So sQ is the distribution of Xn+1. More generally, we
have that sQj is the distribution of Xn+j .

We can also compute the two-step transition proba-
bility:

P (Xn+2 = j | Xn = i)

=
∑
k

P (Xn+2 = j | Xn+1 = k,Xn = i)

P (Xn+1 = k | Xn = i)

=
∑
k

P (Xn+2 = j | Xn+1 = k)P (Xn+1 = k | Xn = i)

=
∑
k

qkjqik

=
∑
k

qikqkj

= (Q2)ij

More generally, we have

P (Xn+m = j | Xn = i) = (Qm)ij

Definition 32.3. Let s be some probability vector for a
Markov chain with transition matrix Q. We say that s is
stationary for the chain if

sQ = s

We also call s a stationary distribution. Note that this is
the transpose of an eigenvector equation.

This definition raises the following questions:

1. Does a stationary distribution exist for every
Markov chain?

2. Is the stationary distribution unique?

3. Does the chain (in some sense) converge to the sta-
tionary distribution?

4. How can we compute it (efficiently)?

Lecture 33 — 11/28/11

Example. The following are some pathological examples
of Markov chains (sans transition probabilities), in state-
diagram form:

1. Unpathological Markov chain

1 2 3

2. Disconnected Markov chain

1 2 3

4 5 6

3. Markov chain with absorbing states

0 1 2 3

4. Periodic Markov chain

1 2 3

Definition 33.1. A state is recurrent if, starting from
that state, there is probability 1 of transitioning back to
that state after a finite number of transitions. If a state
is not recurrent, it is transient.

Definition 33.2. A Markov chain is irreducible if it is
possible (with positive probability) to transition from any
state to any other state in a finite number of transitions.
Note that in an irreducible chain, all states are recurrent;
over an infinite number of transitions, any nonzero prob-
ability of returning to a state means that the event of
return will occur with probability 1.

Observation 33.3. In our example above, Markov
chains 1 and 4 are irreducible; chains 2 and 3 are not.
All the states of chain 2 are recurrent; even though the
chain itself has two connected components, we will al-
ways (i.e., with probability 1), return to the state which
we started from.

However, in chain 3, states 1 and 2 are transient. With
probability 1, from states 1 and 2, we will at some point
transition to state 0 or 3; after that point, we will never
return to state 1 or 2. On the other hand, if we start in
0 or 3, we stay there forever; they are clearly recurrent.

Theorem 33.4. For any irreducible Markov chain,

1. A stationary distribution s exists.
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2. s is unique.

3. si =
1

ri
, where ri is the average time to return to

state i starting from state i.

4. If Qm is strictly positive for some m, then

lim
n→∞

P (Xn = i) = si

Alternatively, if t is any (starting-state) probability
vector, then

lim
n→∞

tQ = s

Definition 33.5. A Markov chain with transition matrix
Q is reversible if there is a probability vector s such that

siqij = sjqji

for all pairs of states i and j.

Reversibility is also known as time-reversibility. Intu-
itively, the progression of a reversible Markov chain could
be played back backwards, and the probabilities would be
consistent with the original Markov chain.

Theorem 33.6. If a Markov chain is reversible with re-
spect to s, then s is stationary.

Proof. We know that siqij = sjqji for some s. Summing
over all states, ∑

i

siqij =
∑
j

sjqji

= sj
∑
j

qji

= sj

But since this is true for every j, this is exactly the state-
ment of

sQ = s

as desired. �

Example (Random walk on an undirected network).
Consider the following example undirected Markov chain

1 2

3 4

Let di be the degree of i (so, d1 = 2, d2 = 2, d3 = 3,
d4 = 1). Then we claim that (in general)

diqij = djqji

for all i, j.
Assume i 6= j. Since the Markov chain is undirected,

qij and qji are either both zero or both nonzero. If (i, j)
is an edge, then

qij =
1

di

since our Markov chain represents a random walk. But
this suffices to prove our claim.

Let us now normalize di to a stationary vector si. This
is easy; we can simply take

si =
di∑
j dj

and we have thus found our desired stationary distribu-
tion.
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